
Computational content of proofs involving
coinduction

Helmut Schwichtenberg
(j.w.w. Kenji Miyamoto and Fredrik Nordvall Forsberg)

Mathematisches Institut, LMU, München

Advances in Proof Theory, Universität Bern,
13.-14. Dezember 2013

1 / 26

Computable functionals

Arguments of any finite type, not only numbers and functions.

I Principle of finite support. If H(Φ) is defined with value n,
then there is a finite approximation Φ0 of Φ such that H(Φ0)
is defined with value n.

I Monotonicity principle. If H(Φ) is defined with value n and Φ′

extends Φ, then also H(Φ′) is defined with value n.

I Effectivity principle. An object is computable iff its set of
finite approximations is (primitive) recursively enumerable (or
equivalently, Σ0

1-definable).

2 / 26

Computable functionals

Arguments of any finite type, not only numbers and functions.

I Principle of finite support. If H(Φ) is defined with value n,
then there is a finite approximation Φ0 of Φ such that H(Φ0)
is defined with value n.

I Monotonicity principle. If H(Φ) is defined with value n and Φ′

extends Φ, then also H(Φ′) is defined with value n.

I Effectivity principle. An object is computable iff its set of
finite approximations is (primitive) recursively enumerable (or
equivalently, Σ0

1-definable).

2 / 26

Computable functionals

Arguments of any finite type, not only numbers and functions.

I Principle of finite support. If H(Φ) is defined with value n,
then there is a finite approximation Φ0 of Φ such that H(Φ0)
is defined with value n.

I Monotonicity principle. If H(Φ) is defined with value n and Φ′

extends Φ, then also H(Φ′) is defined with value n.

I Effectivity principle. An object is computable iff its set of
finite approximations is (primitive) recursively enumerable (or
equivalently, Σ0

1-definable).

2 / 26

Computable functionals

Arguments of any finite type, not only numbers and functions.

I Principle of finite support. If H(Φ) is defined with value n,
then there is a finite approximation Φ0 of Φ such that H(Φ0)
is defined with value n.

I Monotonicity principle. If H(Φ) is defined with value n and Φ′

extends Φ, then also H(Φ′) is defined with value n.

I Effectivity principle. An object is computable iff its set of
finite approximations is (primitive) recursively enumerable (or
equivalently, Σ0

1-definable).

2 / 26

Computable functionals

Arguments of any finite type, not only numbers and functions.

I Principle of finite support. If H(Φ) is defined with value n,
then there is a finite approximation Φ0 of Φ such that H(Φ0)
is defined with value n.

I Monotonicity principle. If H(Φ) is defined with value n and Φ′

extends Φ, then also H(Φ′) is defined with value n.

I Effectivity principle. An object is computable iff its set of
finite approximations is (primitive) recursively enumerable (or
equivalently, Σ0

1-definable).

2 / 26

Tokens, consistency and entailment at base types
Types

I Base types ι: free algebras, given by constructors (e.g. 0, S).
I Function types: ρ→ σ.

Example: ι := D (derivations, or binary trees), by constructors ◦
(leaf, or nil) and C : D→ D→ D (branch, or cons).

I Token aD: ◦, C∗◦, C◦∗, C (C∗◦)◦.
I UD := {a1, . . . , an} consistent if

I all ai start with the same constructor,
I (proper) tokens at j-th argument positions are consistent

(example: {C∗◦,C◦∗}).

I UD ` a (entails) if
I all ai ∈ U and a start with the same constructor,
I (proper) tokens at j-th argument positions of ai entail j-th

argument of a (example: {C∗◦,C◦∗} ` C◦◦).

An ideal xρ is a (possibly infinite) set of tokens which is
I consistent and
I closed under entailment.

3 / 26

Tokens, consistency and entailment at base types
Types

I Base types ι: free algebras, given by constructors (e.g. 0, S).
I Function types: ρ→ σ.

Example: ι := D (derivations, or binary trees), by constructors ◦
(leaf, or nil) and C : D→ D→ D (branch, or cons).

I Token aD: ◦, C∗◦, C◦∗, C (C∗◦)◦.
I UD := {a1, . . . , an} consistent if

I all ai start with the same constructor,
I (proper) tokens at j-th argument positions are consistent

(example: {C∗◦,C◦∗}).

I UD ` a (entails) if
I all ai ∈ U and a start with the same constructor,
I (proper) tokens at j-th argument positions of ai entail j-th

argument of a (example: {C∗◦,C◦∗} ` C◦◦).

An ideal xρ is a (possibly infinite) set of tokens which is
I consistent and
I closed under entailment.

3 / 26

Tokens, consistency and entailment at base types
Types

I Base types ι: free algebras, given by constructors (e.g. 0, S).
I Function types: ρ→ σ.

Example: ι := D (derivations, or binary trees), by constructors ◦
(leaf, or nil) and C : D→ D→ D (branch, or cons).

I Token aD: ◦, C∗◦, C◦∗, C (C∗◦)◦.
I UD := {a1, . . . , an} consistent if

I all ai start with the same constructor,
I (proper) tokens at j-th argument positions are consistent

(example: {C∗◦,C◦∗}).

I UD ` a (entails) if
I all ai ∈ U and a start with the same constructor,
I (proper) tokens at j-th argument positions of ai entail j-th

argument of a (example: {C∗◦,C◦∗} ` C◦◦).

An ideal xρ is a (possibly infinite) set of tokens which is
I consistent and
I closed under entailment.

3 / 26

Tokens, consistency and entailment at base types
Types

I Base types ι: free algebras, given by constructors (e.g. 0, S).
I Function types: ρ→ σ.

Example: ι := D (derivations, or binary trees), by constructors ◦
(leaf, or nil) and C : D→ D→ D (branch, or cons).

I Token aD: ◦, C∗◦, C◦∗, C (C∗◦)◦.
I UD := {a1, . . . , an} consistent if

I all ai start with the same constructor,
I (proper) tokens at j-th argument positions are consistent

(example: {C∗◦,C◦∗}).

I UD ` a (entails) if
I all ai ∈ U and a start with the same constructor,
I (proper) tokens at j-th argument positions of ai entail j-th

argument of a (example: {C∗◦,C◦∗} ` C◦◦).

An ideal xρ is a (possibly infinite) set of tokens which is
I consistent and
I closed under entailment.

3 / 26

Tokens, consistency and entailment at base types
Types

I Base types ι: free algebras, given by constructors (e.g. 0, S).
I Function types: ρ→ σ.

Example: ι := D (derivations, or binary trees), by constructors ◦
(leaf, or nil) and C : D→ D→ D (branch, or cons).

I Token aD: ◦, C∗◦, C◦∗, C (C∗◦)◦.
I UD := {a1, . . . , an} consistent if

I all ai start with the same constructor,
I (proper) tokens at j-th argument positions are consistent

(example: {C∗◦,C◦∗}).

I UD ` a (entails) if
I all ai ∈ U and a start with the same constructor,
I (proper) tokens at j-th argument positions of ai entail j-th

argument of a (example: {C∗◦,C◦∗} ` C◦◦).

An ideal xρ is a (possibly infinite) set of tokens which is
I consistent and
I closed under entailment.

3 / 26

Tokens, consistency and entailment at base types
Types

I Base types ι: free algebras, given by constructors (e.g. 0, S).
I Function types: ρ→ σ.

Example: ι := D (derivations, or binary trees), by constructors ◦
(leaf, or nil) and C : D→ D→ D (branch, or cons).

I Token aD: ◦, C∗◦, C◦∗, C (C∗◦)◦.
I UD := {a1, . . . , an} consistent if

I all ai start with the same constructor,
I (proper) tokens at j-th argument positions are consistent

(example: {C∗◦,C◦∗}).

I UD ` a (entails) if
I all ai ∈ U and a start with the same constructor,
I (proper) tokens at j-th argument positions of ai entail j-th

argument of a (example: {C∗◦,C◦∗} ` C◦◦).

An ideal xρ is a (possibly infinite) set of tokens which is
I consistent and
I closed under entailment.

3 / 26

Tokens, consistency and entailment at base types
Types

I Base types ι: free algebras, given by constructors (e.g. 0, S).
I Function types: ρ→ σ.

Example: ι := D (derivations, or binary trees), by constructors ◦
(leaf, or nil) and C : D→ D→ D (branch, or cons).

I Token aD: ◦, C∗◦, C◦∗, C (C∗◦)◦.
I UD := {a1, . . . , an} consistent if

I all ai start with the same constructor,
I (proper) tokens at j-th argument positions are consistent

(example: {C∗◦,C◦∗}).

I UD ` a (entails) if
I all ai ∈ U and a start with the same constructor,
I (proper) tokens at j-th argument positions of ai entail j-th

argument of a (example: {C∗◦,C◦∗} ` C◦◦).

An ideal xρ is a (possibly infinite) set of tokens which is
I consistent and
I closed under entailment.

3 / 26

Tokens and entailment for N

•0 • S∗@
@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

..
.

{a} ` b iff there is a path from a (up) to b (down).

4 / 26

Total and cototal ideals of base type

An ideal x ι is cototal if every constructor tree P(∗) ∈ x has a
“�1-predecessor” P(C~∗) ∈ x ; it is total if it is cototal and the
relation �1 on x is well-founded.

Examples. N:

I Every total ideal is the deductive closure of a token
S(S . . . (S0) . . .). The set of all tokens S(S . . . (S∗) . . .) is a
cototal ideal.

D (derivations):

I Total ideal ∼ finite derivation.

I Cototal ideal ∼ finite or infinite “locally correct” derivation
[Mints 78].

I Arbitrary ideal ∼ incomplete derivation, with “holes”.

5 / 26

Total and cototal ideals of base type

An ideal x ι is cototal if every constructor tree P(∗) ∈ x has a
“�1-predecessor” P(C~∗) ∈ x ; it is total if it is cototal and the
relation �1 on x is well-founded.

Examples. N:

I Every total ideal is the deductive closure of a token
S(S . . . (S0) . . .). The set of all tokens S(S . . . (S∗) . . .) is a
cototal ideal.

D (derivations):

I Total ideal ∼ finite derivation.

I Cototal ideal ∼ finite or infinite “locally correct” derivation
[Mints 78].

I Arbitrary ideal ∼ incomplete derivation, with “holes”.

5 / 26

Total and cototal ideals of base type

An ideal x ι is cototal if every constructor tree P(∗) ∈ x has a
“�1-predecessor” P(C~∗) ∈ x ; it is total if it is cototal and the
relation �1 on x is well-founded.

Examples. N:

I Every total ideal is the deductive closure of a token
S(S . . . (S0) . . .). The set of all tokens S(S . . . (S∗) . . .) is a
cototal ideal.

D (derivations):

I Total ideal ∼ finite derivation.

I Cototal ideal ∼ finite or infinite “locally correct” derivation
[Mints 78].

I Arbitrary ideal ∼ incomplete derivation, with “holes”.

5 / 26

Total and cototal ideals of base type

An ideal x ι is cototal if every constructor tree P(∗) ∈ x has a
“�1-predecessor” P(C~∗) ∈ x ; it is total if it is cototal and the
relation �1 on x is well-founded.

Examples. N:

I Every total ideal is the deductive closure of a token
S(S . . . (S0) . . .). The set of all tokens S(S . . . (S∗) . . .) is a
cototal ideal.

D (derivations):

I Total ideal ∼ finite derivation.

I Cototal ideal ∼ finite or infinite “locally correct” derivation
[Mints 78].

I Arbitrary ideal ∼ incomplete derivation, with “holes”.

5 / 26

Tokens, consistency and entailment at function types

Ideals: partial continuous functionals f ρ→σ (Scott, Ershov).

I Tokens of type ρ→ σ are pairs (U, a) with U ∈ Conρ.

I { (Ui , ai) | i ∈ I } ∈ Conρ→σ means

∀J⊆I (
⋃

j∈J Uj ∈ Conρ → { aj | j ∈ J } ∈ Conσ).

“Formal neighborhood”.

I W `ρ→σ (U, a) means WU `σ a, where application WU of
W = { (Ui , ai) | i ∈ I } to U is { ai | U `ρ Ui }.

Application of f ρ→σ to xρ is

f (x) := { aσ | ∃U⊆x(U, a) ∈ f }.

Principles of finite support and monotonicity hold.

6 / 26

Tokens, consistency and entailment at function types

Ideals: partial continuous functionals f ρ→σ (Scott, Ershov).

I Tokens of type ρ→ σ are pairs (U, a) with U ∈ Conρ.

I { (Ui , ai) | i ∈ I } ∈ Conρ→σ means

∀J⊆I (
⋃

j∈J Uj ∈ Conρ → { aj | j ∈ J } ∈ Conσ).

“Formal neighborhood”.

I W `ρ→σ (U, a) means WU `σ a, where application WU of
W = { (Ui , ai) | i ∈ I } to U is { ai | U `ρ Ui }.

Application of f ρ→σ to xρ is

f (x) := { aσ | ∃U⊆x(U, a) ∈ f }.

Principles of finite support and monotonicity hold.

6 / 26

Tokens, consistency and entailment at function types

Ideals: partial continuous functionals f ρ→σ (Scott, Ershov).

I Tokens of type ρ→ σ are pairs (U, a) with U ∈ Conρ.

I { (Ui , ai) | i ∈ I } ∈ Conρ→σ means

∀J⊆I (
⋃

j∈J Uj ∈ Conρ → { aj | j ∈ J } ∈ Conσ).

“Formal neighborhood”.

I W `ρ→σ (U, a) means WU `σ a, where application WU of
W = { (Ui , ai) | i ∈ I } to U is { ai | U `ρ Ui }.

Application of f ρ→σ to xρ is

f (x) := { aσ | ∃U⊆x(U, a) ∈ f }.

Principles of finite support and monotonicity hold.

6 / 26

Tokens, consistency and entailment at function types

Ideals: partial continuous functionals f ρ→σ (Scott, Ershov).

I Tokens of type ρ→ σ are pairs (U, a) with U ∈ Conρ.

I { (Ui , ai) | i ∈ I } ∈ Conρ→σ means

∀J⊆I (
⋃

j∈J Uj ∈ Conρ → { aj | j ∈ J } ∈ Conσ).

“Formal neighborhood”.

I W `ρ→σ (U, a) means WU `σ a, where application WU of
W = { (Ui , ai) | i ∈ I } to U is { ai | U `ρ Ui }.

Application of f ρ→σ to xρ is

f (x) := { aσ | ∃U⊆x(U, a) ∈ f }.

Principles of finite support and monotonicity hold.

6 / 26

Tokens, consistency and entailment at function types

Ideals: partial continuous functionals f ρ→σ (Scott, Ershov).

I Tokens of type ρ→ σ are pairs (U, a) with U ∈ Conρ.

I { (Ui , ai) | i ∈ I } ∈ Conρ→σ means

∀J⊆I (
⋃

j∈J Uj ∈ Conρ → { aj | j ∈ J } ∈ Conσ).

“Formal neighborhood”.

I W `ρ→σ (U, a) means WU `σ a, where application WU of
W = { (Ui , ai) | i ∈ I } to U is { ai | U `ρ Ui }.

Application of f ρ→σ to xρ is

f (x) := { aσ | ∃U⊆x(U, a) ∈ f }.

Principles of finite support and monotonicity hold.

6 / 26

Tokens, consistency and entailment at function types

Ideals: partial continuous functionals f ρ→σ (Scott, Ershov).

I Tokens of type ρ→ σ are pairs (U, a) with U ∈ Conρ.

I { (Ui , ai) | i ∈ I } ∈ Conρ→σ means

∀J⊆I (
⋃

j∈J Uj ∈ Conρ → { aj | j ∈ J } ∈ Conσ).

“Formal neighborhood”.

I W `ρ→σ (U, a) means WU `σ a, where application WU of
W = { (Ui , ai) | i ∈ I } to U is { ai | U `ρ Ui }.

Application of f ρ→σ to xρ is

f (x) := { aσ | ∃U⊆x(U, a) ∈ f }.

Principles of finite support and monotonicity hold.

6 / 26

Tokens, consistency and entailment at function types

Ideals: partial continuous functionals f ρ→σ (Scott, Ershov).

I Tokens of type ρ→ σ are pairs (U, a) with U ∈ Conρ.

I { (Ui , ai) | i ∈ I } ∈ Conρ→σ means

∀J⊆I (
⋃

j∈J Uj ∈ Conρ → { aj | j ∈ J } ∈ Conσ).

“Formal neighborhood”.

I W `ρ→σ (U, a) means WU `σ a, where application WU of
W = { (Ui , ai) | i ∈ I } to U is { ai | U `ρ Ui }.

Application of f ρ→σ to xρ is

f (x) := { aσ | ∃U⊆x(U, a) ∈ f }.

Principles of finite support and monotonicity hold.

6 / 26

Computable functionals

A partial continuous functional f ρ is computable if it is a
(primitive) recursively enumerable set of tokens.

How to define computable functionals? By computation rules

D~Pi (~yi) = Mi (i = 1, . . . , n)

with free variables of ~Pi (~yi) and Mi among ~yi , where ~Pi (~yi) are
“constructor patterns”.

Terms (a common extension of Gödel’s T and Plotkin’s PCF)

M,N ::= xρ | Cρ | Dρ | (λxρM
σ)ρ→σ | (Mρ→σNρ)σ.

7 / 26

Computable functionals

A partial continuous functional f ρ is computable if it is a
(primitive) recursively enumerable set of tokens.

How to define computable functionals? By computation rules

D~Pi (~yi) = Mi (i = 1, . . . , n)

with free variables of ~Pi (~yi) and Mi among ~yi , where ~Pi (~yi) are
“constructor patterns”.

Terms (a common extension of Gödel’s T and Plotkin’s PCF)

M,N ::= xρ | Cρ | Dρ | (λxρM
σ)ρ→σ | (Mρ→σNρ)σ.

7 / 26

Computable functionals

A partial continuous functional f ρ is computable if it is a
(primitive) recursively enumerable set of tokens.

How to define computable functionals? By computation rules

D~Pi (~yi) = Mi (i = 1, . . . , n)

with free variables of ~Pi (~yi) and Mi among ~yi , where ~Pi (~yi) are
“constructor patterns”.

Terms (a common extension of Gödel’s T and Plotkin’s PCF)

M,N ::= xρ | Cρ | Dρ | (λxρM
σ)ρ→σ | (Mρ→σNρ)σ.

7 / 26

Computable functionals

A partial continuous functional f ρ is computable if it is a
(primitive) recursively enumerable set of tokens.

How to define computable functionals? By computation rules

D~Pi (~yi) = Mi (i = 1, . . . , n)

with free variables of ~Pi (~yi) and Mi among ~yi , where ~Pi (~yi) are
“constructor patterns”.

Terms (a common extension of Gödel’s T and Plotkin’s PCF)

M,N ::= xρ | Cρ | Dρ | (λxρM
σ)ρ→σ | (Mρ→σNρ)σ.

7 / 26

Computable functionals

A partial continuous functional f ρ is computable if it is a
(primitive) recursively enumerable set of tokens.

How to define computable functionals? By computation rules

D~Pi (~yi) = Mi (i = 1, . . . , n)

with free variables of ~Pi (~yi) and Mi among ~yi , where ~Pi (~yi) are
“constructor patterns”.

Terms (a common extension of Gödel’s T and Plotkin’s PCF)

M,N ::= xρ | Cρ | Dρ | (λxρM
σ)ρ→σ | (Mρ→σNρ)σ.

7 / 26

Examples

+: N→ N→ N defined by

n + 0 = n,

n + Sm = S(n + m).

Y : (τ → τ)→ τ defined by

Yf = f (Yf).

RτN : N→ τ → (N→ τ → τ)→ τ defined by

RτN0xf = x ,

RτN(Sn)xf = fx(RτNnxf).

Reduction (including β, η) is non-terminating, but confluent.

8 / 26

Examples

+: N→ N→ N defined by

n + 0 = n,

n + Sm = S(n + m).

Y : (τ → τ)→ τ defined by

Yf = f (Yf).

RτN : N→ τ → (N→ τ → τ)→ τ defined by

RτN0xf = x ,

RτN(Sn)xf = fx(RτNnxf).

Reduction (including β, η) is non-terminating, but confluent.

8 / 26

Examples

+: N→ N→ N defined by

n + 0 = n,

n + Sm = S(n + m).

Y : (τ → τ)→ τ defined by

Yf = f (Yf).

RτN : N→ τ → (N→ τ → τ)→ τ defined by

RτN0xf = x ,

RτN(Sn)xf = fx(RτNnxf).

Reduction (including β, η) is non-terminating, but confluent.

8 / 26

Examples

+: N→ N→ N defined by

n + 0 = n,

n + Sm = S(n + m).

Y : (τ → τ)→ τ defined by

Yf = f (Yf).

RτN : N→ τ → (N→ τ → τ)→ τ defined by

RτN0xf = x ,

RτN(Sn)xf = fx(RτNnxf).

Reduction (including β, η) is non-terminating, but confluent.

8 / 26

Denotational semantics
How to use computation rules to define a computable functional?
Inductively define (~U, a) ∈ [[λ~xM]] (FV(M) ⊆ {~x }).
Case λ~x ,y ,~zM with ~x free in M, but not y .

(~U, ~W , a) ∈ [[λ~x ,~zM]]

(~U,V , ~W , a) ∈ [[λ~x ,y ,~zM]]
(K).

Case λ~xM with ~x the free variables in M.

U ` a

(U, a) ∈ [[λxx]]
(V),

(~U,V , a) ∈ [[λ~xM]] (~U,V) ⊆ [[λ~xN]]

(~U, a) ∈ [[λ~x(MN)]]
(A).

For every constructor C and defined constant D:

~U ` ~a∗

(~U,C~a∗) ∈ [[C]]
(C),

(~V , a) ∈ [[λ~xM]] ~U ` ~P(~V)

(~U, a) ∈ [[D]]
(D),

with one rule (D) for every defining equation D~P(~x) = M.

9 / 26

Denotational semantics
How to use computation rules to define a computable functional?
Inductively define (~U, a) ∈ [[λ~xM]] (FV(M) ⊆ {~x }).
Case λ~x ,y ,~zM with ~x free in M, but not y .

(~U, ~W , a) ∈ [[λ~x ,~zM]]

(~U,V , ~W , a) ∈ [[λ~x ,y ,~zM]]
(K).

Case λ~xM with ~x the free variables in M.

U ` a

(U, a) ∈ [[λxx]]
(V),

(~U,V , a) ∈ [[λ~xM]] (~U,V) ⊆ [[λ~xN]]

(~U, a) ∈ [[λ~x(MN)]]
(A).

For every constructor C and defined constant D:

~U ` ~a∗

(~U,C~a∗) ∈ [[C]]
(C),

(~V , a) ∈ [[λ~xM]] ~U ` ~P(~V)

(~U, a) ∈ [[D]]
(D),

with one rule (D) for every defining equation D~P(~x) = M.

9 / 26

Denotational semantics
How to use computation rules to define a computable functional?
Inductively define (~U, a) ∈ [[λ~xM]] (FV(M) ⊆ {~x }).
Case λ~x ,y ,~zM with ~x free in M, but not y .

(~U, ~W , a) ∈ [[λ~x ,~zM]]

(~U,V , ~W , a) ∈ [[λ~x ,y ,~zM]]
(K).

Case λ~xM with ~x the free variables in M.

U ` a

(U, a) ∈ [[λxx]]
(V),

(~U,V , a) ∈ [[λ~xM]] (~U,V) ⊆ [[λ~xN]]

(~U, a) ∈ [[λ~x(MN)]]
(A).

For every constructor C and defined constant D:

~U ` ~a∗

(~U,C~a∗) ∈ [[C]]
(C),

(~V , a) ∈ [[λ~xM]] ~U ` ~P(~V)

(~U, a) ∈ [[D]]
(D),

with one rule (D) for every defining equation D~P(~x) = M.

9 / 26

Denotational semantics
How to use computation rules to define a computable functional?
Inductively define (~U, a) ∈ [[λ~xM]] (FV(M) ⊆ {~x }).
Case λ~x ,y ,~zM with ~x free in M, but not y .

(~U, ~W , a) ∈ [[λ~x ,~zM]]

(~U,V , ~W , a) ∈ [[λ~x ,y ,~zM]]
(K).

Case λ~xM with ~x the free variables in M.

U ` a

(U, a) ∈ [[λxx]]
(V),

(~U,V , a) ∈ [[λ~xM]] (~U,V) ⊆ [[λ~xN]]

(~U, a) ∈ [[λ~x(MN)]]
(A).

For every constructor C and defined constant D:

~U ` ~a∗

(~U,C~a∗) ∈ [[C]]
(C),

(~V , a) ∈ [[λ~xM]] ~U ` ~P(~V)

(~U, a) ∈ [[D]]
(D),

with one rule (D) for every defining equation D~P(~x) = M.

9 / 26

Denotational semantics
How to use computation rules to define a computable functional?
Inductively define (~U, a) ∈ [[λ~xM]] (FV(M) ⊆ {~x }).
Case λ~x ,y ,~zM with ~x free in M, but not y .

(~U, ~W , a) ∈ [[λ~x ,~zM]]

(~U,V , ~W , a) ∈ [[λ~x ,y ,~zM]]
(K).

Case λ~xM with ~x the free variables in M.

U ` a

(U, a) ∈ [[λxx]]
(V),

(~U,V , a) ∈ [[λ~xM]] (~U,V) ⊆ [[λ~xN]]

(~U, a) ∈ [[λ~x(MN)]]
(A).

For every constructor C and defined constant D:

~U ` ~a∗

(~U,C~a∗) ∈ [[C]]
(C),

(~V , a) ∈ [[λ~xM]] ~U ` ~P(~V)

(~U, a) ∈ [[D]]
(D),

with one rule (D) for every defining equation D~P(~x) = M.

9 / 26

Denotational semantics
How to use computation rules to define a computable functional?
Inductively define (~U, a) ∈ [[λ~xM]] (FV(M) ⊆ {~x }).
Case λ~x ,y ,~zM with ~x free in M, but not y .

(~U, ~W , a) ∈ [[λ~x ,~zM]]

(~U,V , ~W , a) ∈ [[λ~x ,y ,~zM]]
(K).

Case λ~xM with ~x the free variables in M.

U ` a

(U, a) ∈ [[λxx]]
(V),

(~U,V , a) ∈ [[λ~xM]] (~U,V) ⊆ [[λ~xN]]

(~U, a) ∈ [[λ~x(MN)]]
(A).

For every constructor C and defined constant D:

~U ` ~a∗

(~U,C~a∗) ∈ [[C]]
(C),

(~V , a) ∈ [[λ~xM]] ~U ` ~P(~V)

(~U, a) ∈ [[D]]
(D),

with one rule (D) for every defining equation D~P(~x) = M.

9 / 26

Properties of the denotational semantics

I The value is preserved under standard β, η-conversion and the
computation rules.

I An adequacy theorem holds: whenever a closed term Mι has a
proper token in its denotation [[M]], then M (head) reduces to
a constructor term entailing this token.

10 / 26

Properties of the denotational semantics

I The value is preserved under standard β, η-conversion and the
computation rules.

I An adequacy theorem holds: whenever a closed term Mι has a
proper token in its denotation [[M]], then M (head) reduces to
a constructor term entailing this token.

10 / 26

Properties of the denotational semantics

I The value is preserved under standard β, η-conversion and the
computation rules.

I An adequacy theorem holds: whenever a closed term Mι has a
proper token in its denotation [[M]], then M (head) reduces to
a constructor term entailing this token.

10 / 26

A theory of computable functionals (TCF)

A variant of HAω.

Formulas A and predicates P are defined simultaneously

A,B ::= P~r | A→ B | ∀xA
P ::= X | {~x | A } | I (I inductively defined).

∀XA not allowed, since this would be impredicative: in the
predicate existence axiom P := {~x | A } the formula A could
contain quantifiers with the newly created P in its range.

∀xρA is unproblematic: no such existence axioms.

11 / 26

A theory of computable functionals (TCF)

A variant of HAω.

Formulas A and predicates P are defined simultaneously

A,B ::= P~r | A→ B | ∀xA
P ::= X | {~x | A } | I (I inductively defined).

∀XA not allowed, since this would be impredicative: in the
predicate existence axiom P := {~x | A } the formula A could
contain quantifiers with the newly created P in its range.

∀xρA is unproblematic: no such existence axioms.

11 / 26

A theory of computable functionals (TCF)

A variant of HAω.

Formulas A and predicates P are defined simultaneously

A,B ::= P~r | A→ B | ∀xA
P ::= X | {~x | A } | I (I inductively defined).

∀XA not allowed, since this would be impredicative: in the
predicate existence axiom P := {~x | A } the formula A could
contain quantifiers with the newly created P in its range.

∀xρA is unproblematic: no such existence axioms.

11 / 26

A theory of computable functionals (TCF)

A variant of HAω.

Formulas A and predicates P are defined simultaneously

A,B ::= P~r | A→ B | ∀xA
P ::= X | {~x | A } | I (I inductively defined).

∀XA not allowed, since this would be impredicative: in the
predicate existence axiom P := {~x | A } the formula A could
contain quantifiers with the newly created P in its range.

∀xρA is unproblematic: no such existence axioms.

11 / 26

A theory of computable functionals (TCF)

A variant of HAω.

Formulas A and predicates P are defined simultaneously

A,B ::= P~r | A→ B | ∀xA
P ::= X | {~x | A } | I (I inductively defined).

∀XA not allowed, since this would be impredicative: in the
predicate existence axiom P := {~x | A } the formula A could
contain quantifiers with the newly created P in its range.

∀xρA is unproblematic: no such existence axioms.

11 / 26

Brouwer - Heyting - Kolmogorov

Have →±, ∀±, I±. BHK-interpretation:

I p proves A→ B iff p is a construction transforming any proof
q of A into a proof p(q) of B.

I p proves ∀xρA(x) iff p is a construction such that for all aρ,
p(a) proves A(a).

Leaves open:

I What is a “construction”?

I What is a proof of a prime formula?

Proposal:

I Construction: computable functional.

I Proof of a prime formula I~r : generation tree.

Example: generation tree for Even(6) should consist of a single
branch with nodes Even(0), Even(2), Even(4) and Even(6).

12 / 26

Brouwer - Heyting - Kolmogorov

Have →±, ∀±, I±. BHK-interpretation:

I p proves A→ B iff p is a construction transforming any proof
q of A into a proof p(q) of B.

I p proves ∀xρA(x) iff p is a construction such that for all aρ,
p(a) proves A(a).

Leaves open:

I What is a “construction”?

I What is a proof of a prime formula?

Proposal:

I Construction: computable functional.

I Proof of a prime formula I~r : generation tree.

Example: generation tree for Even(6) should consist of a single
branch with nodes Even(0), Even(2), Even(4) and Even(6).

12 / 26

Brouwer - Heyting - Kolmogorov

Have →±, ∀±, I±. BHK-interpretation:

I p proves A→ B iff p is a construction transforming any proof
q of A into a proof p(q) of B.

I p proves ∀xρA(x) iff p is a construction such that for all aρ,
p(a) proves A(a).

Leaves open:

I What is a “construction”?

I What is a proof of a prime formula?

Proposal:

I Construction: computable functional.

I Proof of a prime formula I~r : generation tree.

Example: generation tree for Even(6) should consist of a single
branch with nodes Even(0), Even(2), Even(4) and Even(6).

12 / 26

Brouwer - Heyting - Kolmogorov

Have →±, ∀±, I±. BHK-interpretation:

I p proves A→ B iff p is a construction transforming any proof
q of A into a proof p(q) of B.

I p proves ∀xρA(x) iff p is a construction such that for all aρ,
p(a) proves A(a).

Leaves open:

I What is a “construction”?

I What is a proof of a prime formula?

Proposal:

I Construction: computable functional.

I Proof of a prime formula I~r : generation tree.

Example: generation tree for Even(6) should consist of a single
branch with nodes Even(0), Even(2), Even(4) and Even(6).

12 / 26

Brouwer - Heyting - Kolmogorov

Have →±, ∀±, I±. BHK-interpretation:

I p proves A→ B iff p is a construction transforming any proof
q of A into a proof p(q) of B.

I p proves ∀xρA(x) iff p is a construction such that for all aρ,
p(a) proves A(a).

Leaves open:

I What is a “construction”?

I What is a proof of a prime formula?

Proposal:

I Construction: computable functional.

I Proof of a prime formula I~r : generation tree.

Example: generation tree for Even(6) should consist of a single
branch with nodes Even(0), Even(2), Even(4) and Even(6).

12 / 26

Brouwer - Heyting - Kolmogorov

Have →±, ∀±, I±. BHK-interpretation:

I p proves A→ B iff p is a construction transforming any proof
q of A into a proof p(q) of B.

I p proves ∀xρA(x) iff p is a construction such that for all aρ,
p(a) proves A(a).

Leaves open:

I What is a “construction”?

I What is a proof of a prime formula?

Proposal:

I Construction: computable functional.

I Proof of a prime formula I~r : generation tree.

Example: generation tree for Even(6) should consist of a single
branch with nodes Even(0), Even(2), Even(4) and Even(6).

12 / 26

Brouwer - Heyting - Kolmogorov

Have →±, ∀±, I±. BHK-interpretation:

I p proves A→ B iff p is a construction transforming any proof
q of A into a proof p(q) of B.

I p proves ∀xρA(x) iff p is a construction such that for all aρ,
p(a) proves A(a).

Leaves open:

I What is a “construction”?

I What is a proof of a prime formula?

Proposal:

I Construction: computable functional.

I Proof of a prime formula I~r : generation tree.

Example: generation tree for Even(6) should consist of a single
branch with nodes Even(0), Even(2), Even(4) and Even(6).

12 / 26

The type τ(A) of a formula A
Distinguish non-computational (n.c.) (or Harrop) and
computationally relevant (c.r.) formulas. Example:

I r = s is n.c.

I Even(n) is c.r.

Extend the use of ρ→ σ to the “nulltype symbol” ◦:

(ρ→ ◦) := ◦, (◦ → σ) := σ, (◦ → ◦) := ◦.

Define the type τ(A) of a formula A by

τ(I~r) =

{
ιI if I is c.r.,

◦ if I is n.c.,

τ(A→ B) := τ(A)→ τ(B),

τ(∀xρA) := ρ→ τ(A)

with ιI associated naturally with I .

13 / 26

The type τ(A) of a formula A
Distinguish non-computational (n.c.) (or Harrop) and
computationally relevant (c.r.) formulas. Example:

I r = s is n.c.

I Even(n) is c.r.

Extend the use of ρ→ σ to the “nulltype symbol” ◦:

(ρ→ ◦) := ◦, (◦ → σ) := σ, (◦ → ◦) := ◦.

Define the type τ(A) of a formula A by

τ(I~r) =

{
ιI if I is c.r.,

◦ if I is n.c.,

τ(A→ B) := τ(A)→ τ(B),

τ(∀xρA) := ρ→ τ(A)

with ιI associated naturally with I .

13 / 26

The type τ(A) of a formula A
Distinguish non-computational (n.c.) (or Harrop) and
computationally relevant (c.r.) formulas. Example:

I r = s is n.c.

I Even(n) is c.r.

Extend the use of ρ→ σ to the “nulltype symbol” ◦:

(ρ→ ◦) := ◦, (◦ → σ) := σ, (◦ → ◦) := ◦.

Define the type τ(A) of a formula A by

τ(I~r) =

{
ιI if I is c.r.,

◦ if I is n.c.,

τ(A→ B) := τ(A)→ τ(B),

τ(∀xρA) := ρ→ τ(A)

with ιI associated naturally with I .

13 / 26

The type τ(A) of a formula A
Distinguish non-computational (n.c.) (or Harrop) and
computationally relevant (c.r.) formulas. Example:

I r = s is n.c.

I Even(n) is c.r.

Extend the use of ρ→ σ to the “nulltype symbol” ◦:

(ρ→ ◦) := ◦, (◦ → σ) := σ, (◦ → ◦) := ◦.

Define the type τ(A) of a formula A by

τ(I~r) =

{
ιI if I is c.r.,

◦ if I is n.c.,

τ(A→ B) := τ(A)→ τ(B),

τ(∀xρA) := ρ→ τ(A)

with ιI associated naturally with I .

13 / 26

The type τ(A) of a formula A
Distinguish non-computational (n.c.) (or Harrop) and
computationally relevant (c.r.) formulas. Example:

I r = s is n.c.

I Even(n) is c.r.

Extend the use of ρ→ σ to the “nulltype symbol” ◦:

(ρ→ ◦) := ◦, (◦ → σ) := σ, (◦ → ◦) := ◦.

Define the type τ(A) of a formula A by

τ(I~r) =

{
ιI if I is c.r.,

◦ if I is n.c.,

τ(A→ B) := τ(A)→ τ(B),

τ(∀xρA) := ρ→ τ(A)

with ιI associated naturally with I .

13 / 26

Realizability

Introduce a special nullterm symbol ε to be used as a “realizer” for
n.c. formulas. Extend term application to ε by

εt := ε, tε := t, εε := ε.

Definition (t r A, t realizes A)

Let A be a formula and t either a term of type τ(A) if the latter is
a type, or the nullterm symbol ε for n.c. A.

t r I~s :=

{
I rt~s if I is c.r. (I r inductively defined),

I~s if I is n.c.,

t r (A→ B) := ∀x(x r A → tx r B),

t r ∀xA := ∀x(tx r A).

14 / 26

Realizability

Introduce a special nullterm symbol ε to be used as a “realizer” for
n.c. formulas. Extend term application to ε by

εt := ε, tε := t, εε := ε.

Definition (t r A, t realizes A)

Let A be a formula and t either a term of type τ(A) if the latter is
a type, or the nullterm symbol ε for n.c. A.

t r I~s :=

{
I rt~s if I is c.r. (I r inductively defined),

I~s if I is n.c.,

t r (A→ B) := ∀x(x r A → tx r B),

t r ∀xA := ∀x(tx r A).

14 / 26

Realizability

Introduce a special nullterm symbol ε to be used as a “realizer” for
n.c. formulas. Extend term application to ε by

εt := ε, tε := t, εε := ε.

Definition (t r A, t realizes A)

Let A be a formula and t either a term of type τ(A) if the latter is
a type, or the nullterm symbol ε for n.c. A.

t r I~s :=

{
I rt~s if I is c.r. (I r inductively defined),

I~s if I is n.c.,

t r (A→ B) := ∀x(x r A → tx r B),

t r ∀xA := ∀x(tx r A).

14 / 26

Realizability

Introduce a special nullterm symbol ε to be used as a “realizer” for
n.c. formulas. Extend term application to ε by

εt := ε, tε := t, εε := ε.

Definition (t r A, t realizes A)

Let A be a formula and t either a term of type τ(A) if the latter is
a type, or the nullterm symbol ε for n.c. A.

t r I~s :=

{
I rt~s if I is c.r. (I r inductively defined),

I~s if I is n.c.,

t r (A→ B) := ∀x(x r A → tx r B),

t r ∀xA := ∀x(tx r A).

14 / 26

Realizability

Introduce a special nullterm symbol ε to be used as a “realizer” for
n.c. formulas. Extend term application to ε by

εt := ε, tε := t, εε := ε.

Definition (t r A, t realizes A)

Let A be a formula and t either a term of type τ(A) if the latter is
a type, or the nullterm symbol ε for n.c. A.

t r I~s :=

{
I rt~s if I is c.r. (I r inductively defined),

I~s if I is n.c.,

t r (A→ B) := ∀x(x r A → tx r B),

t r ∀xA := ∀x(tx r A).

14 / 26

Extracted terms, soundness theorem
For a derivation M of a formula A define its extracted term et(M),
of type τ(A). For MA with A n.c. let et(MA) := ε. Else

et(uA) := x
τ(A)
u (x

τ(A)
u uniquely associated to uA),

et((λuAM
B)A→B) := λ

x
τ(A)
u

et(M),

et((MA→BNA)B) := et(M)et(N),

et((λxρM
A)∀xA) := λxρet(M),

et((M∀xA(x)r)A(r)) := et(M)r .

Extracted terms for the axioms: let I be c.r.

et(I+i) := Ci , et(I−) := R,

where both the constructor Ci and the recursion operator R refer
to the algebra ιI associated with I .

Soundness. Let M be a derivation of A from assumptions ui : Ci .
Then we can derive et(M) r A from assumptions xui r Ci .

15 / 26

Extracted terms, soundness theorem
For a derivation M of a formula A define its extracted term et(M),
of type τ(A). For MA with A n.c. let et(MA) := ε. Else

et(uA) := x
τ(A)
u (x

τ(A)
u uniquely associated to uA),

et((λuAM
B)A→B) := λ

x
τ(A)
u

et(M),

et((MA→BNA)B) := et(M)et(N),

et((λxρM
A)∀xA) := λxρet(M),

et((M∀xA(x)r)A(r)) := et(M)r .

Extracted terms for the axioms: let I be c.r.

et(I+i) := Ci , et(I−) := R,

where both the constructor Ci and the recursion operator R refer
to the algebra ιI associated with I .

Soundness. Let M be a derivation of A from assumptions ui : Ci .
Then we can derive et(M) r A from assumptions xui r Ci .

15 / 26

Extracted terms, soundness theorem
For a derivation M of a formula A define its extracted term et(M),
of type τ(A). For MA with A n.c. let et(MA) := ε. Else

et(uA) := x
τ(A)
u (x

τ(A)
u uniquely associated to uA),

et((λuAM
B)A→B) := λ

x
τ(A)
u

et(M),

et((MA→BNA)B) := et(M)et(N),

et((λxρM
A)∀xA) := λxρet(M),

et((M∀xA(x)r)A(r)) := et(M)r .

Extracted terms for the axioms: let I be c.r.

et(I+i) := Ci , et(I−) := R,

where both the constructor Ci and the recursion operator R refer
to the algebra ιI associated with I .

Soundness. Let M be a derivation of A from assumptions ui : Ci .
Then we can derive et(M) r A from assumptions xui r Ci .

15 / 26

Extracted terms, soundness theorem
For a derivation M of a formula A define its extracted term et(M),
of type τ(A). For MA with A n.c. let et(MA) := ε. Else

et(uA) := x
τ(A)
u (x

τ(A)
u uniquely associated to uA),

et((λuAM
B)A→B) := λ

x
τ(A)
u

et(M),

et((MA→BNA)B) := et(M)et(N),

et((λxρM
A)∀xA) := λxρet(M),

et((M∀xA(x)r)A(r)) := et(M)r .

Extracted terms for the axioms: let I be c.r.

et(I+i) := Ci , et(I−) := R,

where both the constructor Ci and the recursion operator R refer
to the algebra ιI associated with I .

Soundness. Let M be a derivation of A from assumptions ui : Ci .
Then we can derive et(M) r A from assumptions xui r Ci .

15 / 26

Extracted terms, soundness theorem
For a derivation M of a formula A define its extracted term et(M),
of type τ(A). For MA with A n.c. let et(MA) := ε. Else

et(uA) := x
τ(A)
u (x

τ(A)
u uniquely associated to uA),

et((λuAM
B)A→B) := λ

x
τ(A)
u

et(M),

et((MA→BNA)B) := et(M)et(N),

et((λxρM
A)∀xA) := λxρet(M),

et((M∀xA(x)r)A(r)) := et(M)r .

Extracted terms for the axioms: let I be c.r.

et(I+i) := Ci , et(I−) := R,

where both the constructor Ci and the recursion operator R refer
to the algebra ιI associated with I .

Soundness. Let M be a derivation of A from assumptions ui : Ci .
Then we can derive et(M) r A from assumptions xui r Ci .

15 / 26

Extracted terms, soundness theorem
For a derivation M of a formula A define its extracted term et(M),
of type τ(A). For MA with A n.c. let et(MA) := ε. Else

et(uA) := x
τ(A)
u (x

τ(A)
u uniquely associated to uA),

et((λuAM
B)A→B) := λ

x
τ(A)
u

et(M),

et((MA→BNA)B) := et(M)et(N),

et((λxρM
A)∀xA) := λxρet(M),

et((M∀xA(x)r)A(r)) := et(M)r .

Extracted terms for the axioms: let I be c.r.

et(I+i) := Ci , et(I−) := R,

where both the constructor Ci and the recursion operator R refer
to the algebra ιI associated with I .

Soundness. Let M be a derivation of A from assumptions ui : Ci .
Then we can derive et(M) r A from assumptions xui r Ci .

15 / 26

Relation of TCF to type theory

I Main difference: partial functionals are first class citizens.

I “Logic enriched”: Formulas and types kept separate.

I Minimal logic: →,∀ only. x = y (Leibniz equality), ∃, ∨, ∧
inductively defined (Martin-Löf).

I ⊥ := (False = True). Ex-falso-quodlibet: ⊥ → A provable.

I “Decorations” →nc, ∀nc (i) allow abstract theory (ii) remove
unused data.

16 / 26

Relation of TCF to type theory

I Main difference: partial functionals are first class citizens.

I “Logic enriched”: Formulas and types kept separate.

I Minimal logic: →,∀ only. x = y (Leibniz equality), ∃, ∨, ∧
inductively defined (Martin-Löf).

I ⊥ := (False = True). Ex-falso-quodlibet: ⊥ → A provable.

I “Decorations” →nc, ∀nc (i) allow abstract theory (ii) remove
unused data.

16 / 26

Relation of TCF to type theory

I Main difference: partial functionals are first class citizens.

I “Logic enriched”: Formulas and types kept separate.

I Minimal logic: →,∀ only. x = y (Leibniz equality), ∃, ∨, ∧
inductively defined (Martin-Löf).

I ⊥ := (False = True). Ex-falso-quodlibet: ⊥ → A provable.

I “Decorations” →nc, ∀nc (i) allow abstract theory (ii) remove
unused data.

16 / 26

Relation of TCF to type theory

I Main difference: partial functionals are first class citizens.

I “Logic enriched”: Formulas and types kept separate.

I Minimal logic: →,∀ only. x = y (Leibniz equality), ∃, ∨, ∧
inductively defined (Martin-Löf).

I ⊥ := (False = True). Ex-falso-quodlibet: ⊥ → A provable.

I “Decorations” →nc, ∀nc (i) allow abstract theory (ii) remove
unused data.

16 / 26

Relation of TCF to type theory

I Main difference: partial functionals are first class citizens.

I “Logic enriched”: Formulas and types kept separate.

I Minimal logic: →,∀ only. x = y (Leibniz equality), ∃, ∨, ∧
inductively defined (Martin-Löf).

I ⊥ := (False = True). Ex-falso-quodlibet: ⊥ → A provable.

I “Decorations” →nc, ∀nc (i) allow abstract theory (ii) remove
unused data.

16 / 26

Relation of TCF to type theory

I Main difference: partial functionals are first class citizens.

I “Logic enriched”: Formulas and types kept separate.

I Minimal logic: →,∀ only. x = y (Leibniz equality), ∃, ∨, ∧
inductively defined (Martin-Löf).

I ⊥ := (False = True). Ex-falso-quodlibet: ⊥ → A provable.

I “Decorations” →nc, ∀nc (i) allow abstract theory (ii) remove
unused data.

16 / 26

Case study: uniformly continuous functions (U. Berger)

I Formalization of an abstract theory of (uniformly) continuous
real functions f : I → I (I := [−1, 1]).

I Let Cf express that f is a continuous real function. Assume
the abstract theory proves

Cf → ∀n∃m ∀a∃b(f [Ia,m] ⊆ Ib,n)︸ ︷︷ ︸
Bm,nf

with Ib,n := [b − 1
2n , b + 1

2n]

Then

n 7→ m modulus of (uniform) continuity (ω)

n, a 7→ b approximating rational function (h)

17 / 26

Case study: uniformly continuous functions (U. Berger)

I Formalization of an abstract theory of (uniformly) continuous
real functions f : I → I (I := [−1, 1]).

I Let Cf express that f is a continuous real function. Assume
the abstract theory proves

Cf → ∀n∃m ∀a∃b(f [Ia,m] ⊆ Ib,n)︸ ︷︷ ︸
Bm,nf

with Ib,n := [b − 1
2n , b + 1

2n]

Then

n 7→ m modulus of (uniform) continuity (ω)

n, a 7→ b approximating rational function (h)

17 / 26

Case study: uniformly continuous functions (U. Berger)

I Formalization of an abstract theory of (uniformly) continuous
real functions f : I → I (I := [−1, 1]).

I Let Cf express that f is a continuous real function. Assume
the abstract theory proves

Cf → ∀n∃m ∀a∃b(f [Ia,m] ⊆ Ib,n)︸ ︷︷ ︸
Bm,nf

with Ib,n := [b − 1
2n , b + 1

2n]

Then

n 7→ m modulus of (uniform) continuity (ω)

n, a 7→ b approximating rational function (h)

17 / 26

Case study: uniformly continuous functions (U. Berger)

I Formalization of an abstract theory of (uniformly) continuous
real functions f : I → I (I := [−1, 1]).

I Let Cf express that f is a continuous real function. Assume
the abstract theory proves

Cf → ∀n∃m ∀a∃b(f [Ia,m] ⊆ Ib,n)︸ ︷︷ ︸
Bm,nf

with Ib,n := [b − 1
2n , b + 1

2n]

Then

n 7→ m modulus of (uniform) continuity (ω)

n, a 7→ b approximating rational function (h)

17 / 26

ReadX and its witnesses

Inductively define a predicate ReadX of arity (ϕ) by the clauses

∀ncf ∀d(f [I] ⊆ Id → X (Outd ◦ f)→ ReadX f), (ReadX)+0

∀ncf (ReadX (f ◦ In−1)→ ReadX (f ◦ In0)→ ReadX (f ◦ In1)→
ReadX f).

(ReadX)+1

where Id = [d−12 , d+1
2] (d ∈ {−1, 0, 1}) and

(Outd ◦ f)(x) := 2f (x)− d , (f ◦ Ind)(x) := f (
x + d

2
).

Witnesses for ReadX f : total ideals in

Rα := µξ(PutSD→α→ξ,Getξ→ξ→ξ→ξ)

where SD := {−1, 0, 1}.

18 / 26

ReadX and its witnesses

Inductively define a predicate ReadX of arity (ϕ) by the clauses

∀ncf ∀d(f [I] ⊆ Id → X (Outd ◦ f)→ ReadX f), (ReadX)+0

∀ncf (ReadX (f ◦ In−1)→ ReadX (f ◦ In0)→ ReadX (f ◦ In1)→
ReadX f).

(ReadX)+1

where Id = [d−12 , d+1
2] (d ∈ {−1, 0, 1}) and

(Outd ◦ f)(x) := 2f (x)− d , (f ◦ Ind)(x) := f (
x + d

2
).

Witnesses for ReadX f : total ideals in

Rα := µξ(PutSD→α→ξ,Getξ→ξ→ξ→ξ)

where SD := {−1, 0, 1}.

18 / 26

ReadX and its witnesses

Inductively define a predicate ReadX of arity (ϕ) by the clauses

∀ncf ∀d(f [I] ⊆ Id → X (Outd ◦ f)→ ReadX f), (ReadX)+0

∀ncf (ReadX (f ◦ In−1)→ ReadX (f ◦ In0)→ ReadX (f ◦ In1)→
ReadX f).

(ReadX)+1

where Id = [d−12 , d+1
2] (d ∈ {−1, 0, 1}) and

(Outd ◦ f)(x) := 2f (x)− d , (f ◦ Ind)(x) := f (
x + d

2
).

Witnesses for ReadX f : total ideals in

Rα := µξ(PutSD→α→ξ,Getξ→ξ→ξ→ξ)

where SD := {−1, 0, 1}.

18 / 26

Write, coWrite and its witnesses

Nested inductive definition of a predicate Write of arity (ϕ):

Write(Id), ∀ncf (ReadWritef →Write f) (Id identity function).

Witnesses for Write f : total ideals in

W := µξ(Stopξ,ContRξ→ξ).

Define coWrite, a companion predicate of Write, by

∀ncf (coWrite f → f = Id ∨ ReadcoWritef). (coWrite)−

Witnesses for coWrite f : W-cototal RW-total ideals t.

19 / 26

Write, coWrite and its witnesses

Nested inductive definition of a predicate Write of arity (ϕ):

Write(Id), ∀ncf (ReadWritef →Write f) (Id identity function).

Witnesses for Write f : total ideals in

W := µξ(Stopξ,ContRξ→ξ).

Define coWrite, a companion predicate of Write, by

∀ncf (coWrite f → f = Id ∨ ReadcoWritef). (coWrite)−

Witnesses for coWrite f : W-cototal RW-total ideals t.

19 / 26

Write, coWrite and its witnesses

Nested inductive definition of a predicate Write of arity (ϕ):

Write(Id), ∀ncf (ReadWritef →Write f) (Id identity function).

Witnesses for Write f : total ideals in

W := µξ(Stopξ,ContRξ→ξ).

Define coWrite, a companion predicate of Write, by

∀ncf (coWrite f → f = Id ∨ ReadcoWritef). (coWrite)−

Witnesses for coWrite f : W-cototal RW-total ideals t.

19 / 26

Write, coWrite and its witnesses

Nested inductive definition of a predicate Write of arity (ϕ):

Write(Id), ∀ncf (ReadWritef →Write f) (Id identity function).

Witnesses for Write f : total ideals in

W := µξ(Stopξ,ContRξ→ξ).

Define coWrite, a companion predicate of Write, by

∀ncf (coWrite f → f = Id ∨ ReadcoWritef). (coWrite)−

Witnesses for coWrite f : W-cototal RW-total ideals t.

19 / 26

Write, coWrite and its witnesses

Nested inductive definition of a predicate Write of arity (ϕ):

Write(Id), ∀ncf (ReadWritef →Write f) (Id identity function).

Witnesses for Write f : total ideals in

W := µξ(Stopξ,ContRξ→ξ).

Define coWrite, a companion predicate of Write, by

∀ncf (coWrite f → f = Id ∨ ReadcoWritef). (coWrite)−

Witnesses for coWrite f : W-cototal RW-total ideals t.

19 / 26

W-cototal RW-total ideals

are possibly non well-founded trees t:

..

.

•
@
@@

..

.

•
..
.

•
�

��• Get

• Cont

Stop •
@
@@

Stop
• •��������

Putd

•
Get

I Get-Put-part: well-founded,

I Stop-Cont-part: not necessarily well-founded.

20 / 26

W-cototal RW-total ideals

are possibly non well-founded trees t:

..

.

•
@
@@

..

.

•
..
.

•
�

��• Get

• Cont

Stop •
@
@@

Stop
• •��������

Putd

•
Get

I Get-Put-part: well-founded,

I Stop-Cont-part: not necessarily well-founded.

20 / 26

W-cototal RW-total ideals as stream transformers

View them as read-write machines.

I Start at the root of the tree.

I At node Putd t, output the digit d , carry on with the tree t.

I At node Get t−1 t0 t1, read a digit d from the input stream
and continue with the tree td .

I At node Stop, return the rest of the input unprocessed as
output.

I At node Cont t, continue with the tree t.

Output might be infinite, but RW-totality ensures that the
machine can only read finitely many input digits before producing
another output digit.

The machine represents a continuous function.

21 / 26

W-cototal RW-total ideals as stream transformers

View them as read-write machines.

I Start at the root of the tree.

I At node Putd t, output the digit d , carry on with the tree t.

I At node Get t−1 t0 t1, read a digit d from the input stream
and continue with the tree td .

I At node Stop, return the rest of the input unprocessed as
output.

I At node Cont t, continue with the tree t.

Output might be infinite, but RW-totality ensures that the
machine can only read finitely many input digits before producing
another output digit.

The machine represents a continuous function.

21 / 26

W-cototal RW-total ideals as stream transformers

View them as read-write machines.

I Start at the root of the tree.

I At node Putd t, output the digit d , carry on with the tree t.

I At node Get t−1 t0 t1, read a digit d from the input stream
and continue with the tree td .

I At node Stop, return the rest of the input unprocessed as
output.

I At node Cont t, continue with the tree t.

Output might be infinite, but RW-totality ensures that the
machine can only read finitely many input digits before producing
another output digit.

The machine represents a continuous function.

21 / 26

W-cototal RW-total ideals as stream transformers

View them as read-write machines.

I Start at the root of the tree.

I At node Putd t, output the digit d , carry on with the tree t.

I At node Get t−1 t0 t1, read a digit d from the input stream
and continue with the tree td .

I At node Stop, return the rest of the input unprocessed as
output.

I At node Cont t, continue with the tree t.

Output might be infinite, but RW-totality ensures that the
machine can only read finitely many input digits before producing
another output digit.

The machine represents a continuous function.

21 / 26

W-cototal RW-total ideals as stream transformers

View them as read-write machines.

I Start at the root of the tree.

I At node Putd t, output the digit d , carry on with the tree t.

I At node Get t−1 t0 t1, read a digit d from the input stream
and continue with the tree td .

I At node Stop, return the rest of the input unprocessed as
output.

I At node Cont t, continue with the tree t.

Output might be infinite, but RW-totality ensures that the
machine can only read finitely many input digits before producing
another output digit.

The machine represents a continuous function.

21 / 26

W-cototal RW-total ideals as stream transformers

View them as read-write machines.

I Start at the root of the tree.

I At node Putd t, output the digit d , carry on with the tree t.

I At node Get t−1 t0 t1, read a digit d from the input stream
and continue with the tree td .

I At node Stop, return the rest of the input unprocessed as
output.

I At node Cont t, continue with the tree t.

Output might be infinite, but RW-totality ensures that the
machine can only read finitely many input digits before producing
another output digit.

The machine represents a continuous function.

21 / 26

W-cototal RW-total ideals as stream transformers

View them as read-write machines.

I Start at the root of the tree.

I At node Putd t, output the digit d , carry on with the tree t.

I At node Get t−1 t0 t1, read a digit d from the input stream
and continue with the tree td .

I At node Stop, return the rest of the input unprocessed as
output.

I At node Cont t, continue with the tree t.

Output might be infinite, but RW-totality ensures that the
machine can only read finitely many input digits before producing
another output digit.

The machine represents a continuous function.

21 / 26

W-cototal RW-total ideals as stream transformers

View them as read-write machines.

I Start at the root of the tree.

I At node Putd t, output the digit d , carry on with the tree t.

I At node Get t−1 t0 t1, read a digit d from the input stream
and continue with the tree td .

I At node Stop, return the rest of the input unprocessed as
output.

I At node Cont t, continue with the tree t.

Output might be infinite, but RW-totality ensures that the
machine can only read finitely many input digits before producing
another output digit.

The machine represents a continuous function.

21 / 26

W-cototal RW-total ideals as stream transformers

View them as read-write machines.

I Start at the root of the tree.

I At node Putd t, output the digit d , carry on with the tree t.

I At node Get t−1 t0 t1, read a digit d from the input stream
and continue with the tree td .

I At node Stop, return the rest of the input unprocessed as
output.

I At node Cont t, continue with the tree t.

Output might be infinite, but RW-totality ensures that the
machine can only read finitely many input digits before producing
another output digit.

The machine represents a continuous function.

21 / 26

Cf implies coWrite f : informal proof

The greatest-fixed-point axiom (coWrite)+ (coinduction) is

∀ncf (Q f → ∀ncf (Q f → f = Id ∨ ReadcoWrite∨Q f)→ coWrite f).

Theorem [Type-1 u.c.f. into type-0 u.c.f.]. ∀ncf (Cf → coWrite f).

Proof. Assume Cf . Use (coWrite)+ with competitor C. Suffices
∀ncf (Cf → f = Id ∨ ReadcoWrite∨Cf). Assume Cf , in particular
Bm,2f := ∀a∃b(f [Ia,m] ⊆ Ib,2) for some m. Get rhs by Lemma 1.

Lemma 1. ∀m∀ncf (Bm,2f → Cf → ReadcoWrite∨Cf).

Proof. Induction on m, using Lemma 2 in the base case.

Lemma 2 [FindSD]. ∀ncf (B0,2f → ∃d(f [I] ⊆ Id)).

Proof. Assume B0,2f . Then f [I0,0] ⊆ Ib,2 for some b, by definition
of Bn,m. Have b ≤ −1

4 , −1
4 ≤ b ≤ 1

4 or 1
4 ≤ b. Can determine

either of Ib,2 ⊆ I−1, Ib,2 ⊆ I0 or Ib,2 ⊆ I1, hence ∃d(f [I] ⊆ Id).

22 / 26

Cf implies coWrite f : informal proof

The greatest-fixed-point axiom (coWrite)+ (coinduction) is

∀ncf (Q f → ∀ncf (Q f → f = Id ∨ ReadcoWrite∨Q f)→ coWrite f).

Theorem [Type-1 u.c.f. into type-0 u.c.f.]. ∀ncf (Cf → coWrite f).

Proof. Assume Cf . Use (coWrite)+ with competitor C. Suffices
∀ncf (Cf → f = Id ∨ ReadcoWrite∨Cf). Assume Cf , in particular
Bm,2f := ∀a∃b(f [Ia,m] ⊆ Ib,2) for some m. Get rhs by Lemma 1.

Lemma 1. ∀m∀ncf (Bm,2f → Cf → ReadcoWrite∨Cf).

Proof. Induction on m, using Lemma 2 in the base case.

Lemma 2 [FindSD]. ∀ncf (B0,2f → ∃d(f [I] ⊆ Id)).

Proof. Assume B0,2f . Then f [I0,0] ⊆ Ib,2 for some b, by definition
of Bn,m. Have b ≤ −1

4 , −1
4 ≤ b ≤ 1

4 or 1
4 ≤ b. Can determine

either of Ib,2 ⊆ I−1, Ib,2 ⊆ I0 or Ib,2 ⊆ I1, hence ∃d(f [I] ⊆ Id).

22 / 26

Cf implies coWrite f : informal proof

The greatest-fixed-point axiom (coWrite)+ (coinduction) is

∀ncf (Q f → ∀ncf (Q f → f = Id ∨ ReadcoWrite∨Q f)→ coWrite f).

Theorem [Type-1 u.c.f. into type-0 u.c.f.]. ∀ncf (Cf → coWrite f).

Proof. Assume Cf . Use (coWrite)+ with competitor C. Suffices
∀ncf (Cf → f = Id ∨ ReadcoWrite∨Cf). Assume Cf , in particular
Bm,2f := ∀a∃b(f [Ia,m] ⊆ Ib,2) for some m. Get rhs by Lemma 1.

Lemma 1. ∀m∀ncf (Bm,2f → Cf → ReadcoWrite∨Cf).

Proof. Induction on m, using Lemma 2 in the base case.

Lemma 2 [FindSD]. ∀ncf (B0,2f → ∃d(f [I] ⊆ Id)).

Proof. Assume B0,2f . Then f [I0,0] ⊆ Ib,2 for some b, by definition
of Bn,m. Have b ≤ −1

4 , −1
4 ≤ b ≤ 1

4 or 1
4 ≤ b. Can determine

either of Ib,2 ⊆ I−1, Ib,2 ⊆ I0 or Ib,2 ⊆ I1, hence ∃d(f [I] ⊆ Id).

22 / 26

Cf implies coWrite f : informal proof

The greatest-fixed-point axiom (coWrite)+ (coinduction) is

∀ncf (Q f → ∀ncf (Q f → f = Id ∨ ReadcoWrite∨Q f)→ coWrite f).

Theorem [Type-1 u.c.f. into type-0 u.c.f.]. ∀ncf (Cf → coWrite f).

Proof. Assume Cf . Use (coWrite)+ with competitor C. Suffices
∀ncf (Cf → f = Id ∨ ReadcoWrite∨Cf). Assume Cf , in particular
Bm,2f := ∀a∃b(f [Ia,m] ⊆ Ib,2) for some m. Get rhs by Lemma 1.

Lemma 1. ∀m∀ncf (Bm,2f → Cf → ReadcoWrite∨Cf).

Proof. Induction on m, using Lemma 2 in the base case.

Lemma 2 [FindSD]. ∀ncf (B0,2f → ∃d(f [I] ⊆ Id)).

Proof. Assume B0,2f . Then f [I0,0] ⊆ Ib,2 for some b, by definition
of Bn,m. Have b ≤ −1

4 , −1
4 ≤ b ≤ 1

4 or 1
4 ≤ b. Can determine

either of Ib,2 ⊆ I−1, Ib,2 ⊆ I0 or Ib,2 ⊆ I1, hence ∃d(f [I] ⊆ Id).

22 / 26

Cf implies coWrite f : informal proof

The greatest-fixed-point axiom (coWrite)+ (coinduction) is

∀ncf (Q f → ∀ncf (Q f → f = Id ∨ ReadcoWrite∨Q f)→ coWrite f).

Theorem [Type-1 u.c.f. into type-0 u.c.f.]. ∀ncf (Cf → coWrite f).

Proof. Assume Cf . Use (coWrite)+ with competitor C. Suffices
∀ncf (Cf → f = Id ∨ ReadcoWrite∨Cf). Assume Cf , in particular
Bm,2f := ∀a∃b(f [Ia,m] ⊆ Ib,2) for some m. Get rhs by Lemma 1.

Lemma 1. ∀m∀ncf (Bm,2f → Cf → ReadcoWrite∨Cf).

Proof. Induction on m, using Lemma 2 in the base case.

Lemma 2 [FindSD]. ∀ncf (B0,2f → ∃d(f [I] ⊆ Id)).

Proof. Assume B0,2f . Then f [I0,0] ⊆ Ib,2 for some b, by definition
of Bn,m. Have b ≤ −1

4 , −1
4 ≤ b ≤ 1

4 or 1
4 ≤ b. Can determine

either of Ib,2 ⊆ I−1, Ib,2 ⊆ I0 or Ib,2 ⊆ I1, hence ∃d(f [I] ⊆ Id).

22 / 26

Cf implies coWrite f : informal proof

The greatest-fixed-point axiom (coWrite)+ (coinduction) is

∀ncf (Q f → ∀ncf (Q f → f = Id ∨ ReadcoWrite∨Q f)→ coWrite f).

Theorem [Type-1 u.c.f. into type-0 u.c.f.]. ∀ncf (Cf → coWrite f).

Proof. Assume Cf . Use (coWrite)+ with competitor C. Suffices
∀ncf (Cf → f = Id ∨ ReadcoWrite∨Cf). Assume Cf , in particular
Bm,2f := ∀a∃b(f [Ia,m] ⊆ Ib,2) for some m. Get rhs by Lemma 1.

Lemma 1. ∀m∀ncf (Bm,2f → Cf → ReadcoWrite∨Cf).

Proof. Induction on m, using Lemma 2 in the base case.

Lemma 2 [FindSD]. ∀ncf (B0,2f → ∃d(f [I] ⊆ Id)).

Proof. Assume B0,2f . Then f [I0,0] ⊆ Ib,2 for some b, by definition
of Bn,m. Have b ≤ −1

4 , −1
4 ≤ b ≤ 1

4 or 1
4 ≤ b. Can determine

either of Ib,2 ⊆ I−1, Ib,2 ⊆ I0 or Ib,2 ⊆ I1, hence ∃d(f [I] ⊆ Id).

22 / 26

[oh](CoRec (nat=>nat@@(rat=>rat))=>algwrite)oh

([oh0]Inr((Rec nat=>..[type]..)

left(oh0(Succ(Succ Zero)))

([g,oh1] [let sd (cFindSd(g 0))

(Put sd

(InR([n]left(oh1(Succ n))@

([a]2*right(oh1(Succ n))a-SDToInt sd))))])

([n,st,g,oh1]

Get

(st([a]g((a+IntN 1)/2))

([n0]left(oh1 n0)@

([a]right(oh1 n0)((a+IntN 1)/2))))

(st([a]g(a/2))([n0]left(oh1 n0)@

([a]right(oh1 n0)(a/2))))

(st([a]g((a+1)/2))([n0]left(oh1 n0)@

([a]right(oh1 n0)((a+1)/2)))))

right(oh0(Succ(Succ Zero)))

oh0))

23 / 26

Corecursion
The corecursion operator coRτW has type

τ → (τ → U + RW+τ)→W.

Conversion rule

coRτWNM 7→ [case (MN)U+R(W+τ) of

Inl 7→ Stop |
Inr x 7→ Cont(MW

R(W+τ)(λp[case pW+τ of

Inl yW 7→ y |
Inr zτ 7→ coRτWzM])

xR(W+τ)]

with M a “map”-operator.

I Here τ is N→ N× (Q→ Q), for pairs of ω : N→ N and
h : N→ Q→ Q (variable name oh).

I No termination; translate into Haskell for evaluation.

24 / 26

Corecursion
The corecursion operator coRτW has type

τ → (τ → U + RW+τ)→W.

Conversion rule

coRτWNM 7→ [case (MN)U+R(W+τ) of

Inl 7→ Stop |
Inr x 7→ Cont(MW

R(W+τ)(λp[case pW+τ of

Inl yW 7→ y |
Inr zτ 7→ coRτWzM])

xR(W+τ)]

with M a “map”-operator.

I Here τ is N→ N× (Q→ Q), for pairs of ω : N→ N and
h : N→ Q→ Q (variable name oh).

I No termination; translate into Haskell for evaluation.

24 / 26

Corecursion
The corecursion operator coRτW has type

τ → (τ → U + RW+τ)→W.

Conversion rule

coRτWNM 7→ [case (MN)U+R(W+τ) of

Inl 7→ Stop |
Inr x 7→ Cont(MW

R(W+τ)(λp[case pW+τ of

Inl yW 7→ y |
Inr zτ 7→ coRτWzM])

xR(W+τ)]

with M a “map”-operator.

I Here τ is N→ N× (Q→ Q), for pairs of ω : N→ N and
h : N→ Q→ Q (variable name oh).

I No termination; translate into Haskell for evaluation.

24 / 26

Corecursion
The corecursion operator coRτW has type

τ → (τ → U + RW+τ)→W.

Conversion rule

coRτWNM 7→ [case (MN)U+R(W+τ) of

Inl 7→ Stop |
Inr x 7→ Cont(MW

R(W+τ)(λp[case pW+τ of

Inl yW 7→ y |
Inr zτ 7→ coRτWzM])

xR(W+τ)]

with M a “map”-operator.

I Here τ is N→ N× (Q→ Q), for pairs of ω : N→ N and
h : N→ Q→ Q (variable name oh).

I No termination; translate into Haskell for evaluation.

24 / 26

Corecursion
The corecursion operator coRτW has type

τ → (τ → U + RW+τ)→W.

Conversion rule

coRτWNM 7→ [case (MN)U+R(W+τ) of

Inl 7→ Stop |
Inr x 7→ Cont(MW

R(W+τ)(λp[case pW+τ of

Inl yW 7→ y |
Inr zτ 7→ coRτWzM])

xR(W+τ)]

with M a “map”-operator.

I Here τ is N→ N× (Q→ Q), for pairs of ω : N→ N and
h : N→ Q→ Q (variable name oh).

I No termination; translate into Haskell for evaluation.

24 / 26

Conclusion

TCF (theory of computable functionals) as a possible foundation
for exact real arithmetic.

I Simply typed theory, with “lazy” free algebras as base types
(⇒ constructors are injective and have disjoint ranges).

I Variables range over partial continuous functionals.

I Constants denote computable functionals (:= r.e. ideals).

I Minimal logic (→, ∀), plus inductive & coinductive definitions.

I Computational content in abstract theories.

I Decorations (→,∀ and →nc, ∀nc) for fine-tuning.

25 / 26

References

I U. Berger, From coinductive proofs to exact real arithmetic.
CSL 2009.

I K. Miyamoto and H.S., Program extraction in exact real
arithmetic. To appear, MSCS.

I K. Miyamoto, F. Nordvall Forsberg and H.S., Program
extraction from nested definitions. ITP 2013.

I H.S. and S.S. Wainer, Proofs and Computations. Perspectives
in Logic, ASL & Cambridge UP, 2012.

26 / 26

