Computational content of proofs involving coinduction

Helmut Schwichtenberg (j.w.w. Kenji Miyamoto and Fredrik Nordvall Forsberg)

Mathematisches Institut, LMU, München

Advances in Proof Theory, Universität Bern, 13.-14. Dezember 2013

- Principle of finite support. If H(Φ) is defined with value n, then there is a finite approximation Φ₀ of Φ such that H(Φ₀) is defined with value n.
- Monotonicity principle. If H(Φ) is defined with value n and Φ' extends Φ, then also H(Φ') is defined with value n.
- Effectivity principle. An object is computable iff its set of finite approximations is (primitive) recursively enumerable (or equivalently, Σ⁰₁-definable).

- Principle of finite support. If H(Φ) is defined with value n, then there is a finite approximation Φ₀ of Φ such that H(Φ₀) is defined with value n.
- Monotonicity principle. If H(Φ) is defined with value n and Φ' extends Φ, then also H(Φ') is defined with value n.
- Effectivity principle. An object is computable iff its set of finite approximations is (primitive) recursively enumerable (or equivalently, Σ⁰₁-definable).

- Principle of finite support. If H(Φ) is defined with value n, then there is a finite approximation Φ₀ of Φ such that H(Φ₀) is defined with value n.
- Monotonicity principle. If H(Φ) is defined with value n and Φ' extends Φ, then also H(Φ') is defined with value n.
- Effectivity principle. An object is computable iff its set of finite approximations is (primitive) recursively enumerable (or equivalently, Σ⁰₁-definable).

- Principle of finite support. If H(Φ) is defined with value n, then there is a finite approximation Φ₀ of Φ such that H(Φ₀) is defined with value n.
- Monotonicity principle. If H(Φ) is defined with value n and Φ' extends Φ, then also H(Φ') is defined with value n.
- Effectivity principle. An object is computable iff its set of finite approximations is (primitive) recursively enumerable (or equivalently, Σ⁰₁-definable).

- Principle of finite support. If H(Φ) is defined with value n, then there is a finite approximation Φ₀ of Φ such that H(Φ₀) is defined with value n.
- Monotonicity principle. If H(Φ) is defined with value n and Φ' extends Φ, then also H(Φ') is defined with value n.
- Effectivity principle. An object is computable iff its set of finite approximations is (primitive) recursively enumerable (or equivalently, Σ⁰₁-definable).

Types

- ▶ Base types ι : free algebras, given by constructors (e.g. 0, S).
- Function types: $\rho \rightarrow \sigma$.

Example: $\iota := D$ (derivations, or binary trees), by constructors \circ (leaf, or nil) and $C : D \rightarrow D \rightarrow D$ (branch, or cons).

- ▶ **Token** *a*^D: 0, *C**0, *C*0*, *C*(*C**0)0.
- $U^{\mathsf{D}} := \{a_1, \ldots, a_n\}$ consistent if
 - ▶ all *a_i* start with the same constructor,
 - ▶ (proper) tokens at *j*-th argument positions are consistent (example: {C*○, C○*}).
- ► $U^{\mathbf{D}} \vdash a$ (entails) if
 - all $a_i \in U$ and a start with the same constructor,
 - (proper) tokens at *j*-th argument positions of *a_i* entail *j*-th argument of *a* (example: {*C*∗∘, *C*∘∗} ⊢ *C*∘∘).

- consistent and
- closed under entailment.

• Base types ι : free algebras, given by constructors (e.g. 0, S).

• Function types: $\rho \rightarrow \sigma$.

Example: $\iota := \mathbf{D}$ (derivations, or binary trees), by constructors \circ (leaf, or nil) and $C : \mathbf{D} \to \mathbf{D} \to \mathbf{D}$ (branch, or cons).

- ► Token a^D: 0, C*0, C0*, C(C*0)0.
- $U^{\mathsf{D}} := \{a_1, \ldots, a_n\}$ consistent if
 - ▶ all *a_i* start with the same constructor,
 - ▶ (proper) tokens at *j*-th argument positions are consistent (example: {C*◦, C◦*}).
- ► $U^{\mathbf{D}} \vdash a$ (entails) if
 - all $a_i \in U$ and a start with the same constructor,
 - (proper) tokens at *j*-th argument positions of *a_i* entail *j*-th argument of *a* (example: {*C*∗◦, *C*◦∗} ⊢ *C*◦◦).

- consistent and
- closed under entailment.

Types

- Base types ι : free algebras, given by constructors (e.g. 0, S).
- Function types: $\rho \rightarrow \sigma$.

Example: $\iota := \mathbf{D}$ (derivations, or binary trees), by constructors \circ (leaf, or nil) and $C : \mathbf{D} \to \mathbf{D} \to \mathbf{D}$ (branch, or cons).

- ▶ Token a^D: 0, C*0, C0*, C(C*0)0.
- $U^{\mathbf{D}} := \{a_1, \ldots, a_n\}$ consistent if
 - ▶ all *a_i* start with the same constructor,
 - ▶ (proper) tokens at *j*-th argument positions are consistent (example: {C*◦, C◦*}).
- ► $U^{\mathbf{D}} \vdash a$ (entails) if
 - all $a_i \in U$ and a start with the same constructor,
 - (proper) tokens at *j*-th argument positions of *a_i* entail *j*-th argument of *a* (example: {*C*∗◦, *C*◦∗} ⊢ *C*◦◦).

- consistent and
- closed under entailment.

Types

- Base types ι : free algebras, given by constructors (e.g. 0, S).
- Function types: $\rho \rightarrow \sigma$.

Example: $\iota := \mathbf{D}$ (derivations, or binary trees), by constructors \circ (leaf, or nil) and $C : \mathbf{D} \to \mathbf{D} \to \mathbf{D}$ (branch, or cons).

- ► Token a^D: 0, C*0, C0*, C(C*0)0.
- $U^{\mathsf{D}} := \{a_1, \ldots, a_n\}$ consistent if
 - ▶ all *a_i* start with the same constructor,
 - ▶ (proper) tokens at *j*-th argument positions are consistent (example: {C*○, C○*}).
- ► $U^{\mathbf{D}} \vdash a$ (entails) if
 - all $a_i \in U$ and a start with the same constructor,
 - (proper) tokens at *j*-th argument positions of *a_i* entail *j*-th argument of *a* (example: {*C*∗◦, *C*◦∗} ⊢ *C*◦◦).

- consistent and
- closed under entailment.

Types

- Base types ι : free algebras, given by constructors (e.g. 0, S).
- Function types: $\rho \rightarrow \sigma$.

Example: $\iota := \mathbf{D}$ (derivations, or binary trees), by constructors \circ (leaf, or nil) and $C : \mathbf{D} \to \mathbf{D} \to \mathbf{D}$ (branch, or cons).

- ► Token a^D: 0, C*0, C0*, C(C*0)0.
- $U^{\mathsf{D}} := \{a_1, \ldots, a_n\}$ consistent if
 - all a_i start with the same constructor,
 - ▶ (proper) tokens at *j*-th argument positions are consistent (example: {C*o, Co*}).
- ► $U^{\mathsf{D}} \vdash a$ (entails) if
 - all $a_i \in U$ and a start with the same constructor,
 - (proper) tokens at *j*-th argument positions of *a_i* entail *j*-th argument of *a* (example: {*C*∗◦, *C*◦∗} ⊢ *C*◦◦).

- consistent and
- closed under entailment.

Types

- Base types ι : free algebras, given by constructors (e.g. 0, S).
- Function types: $\rho \rightarrow \sigma$.

Example: $\iota := \mathbf{D}$ (derivations, or binary trees), by constructors \circ (leaf, or nil) and $C : \mathbf{D} \to \mathbf{D} \to \mathbf{D}$ (branch, or cons).

- ► Token a^D: 0, C*0, C0*, C(C*0)0.
- $U^{\mathsf{D}} := \{a_1, \ldots, a_n\}$ consistent if
 - ▶ all *a_i* start with the same constructor,
 - ▶ (proper) tokens at *j*-th argument positions are consistent (example: {C*○, C○*}).
- U^D ⊢ a (entails) if
 - all $a_i \in U$ and a start with the same constructor,
 - (proper) tokens at *j*-th argument positions of *a_i* entail *j*-th argument of *a* (example: {*C*∗∘, *C*∘∗} ⊢ *C*∘∘).

- consistent and
- closed under entailment.

Types

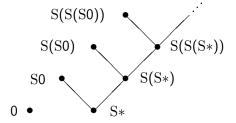
- Base types ι : free algebras, given by constructors (e.g. 0, S).
- Function types: $\rho \rightarrow \sigma$.

Example: $\iota := \mathbf{D}$ (derivations, or binary trees), by constructors \circ (leaf, or nil) and $C : \mathbf{D} \to \mathbf{D} \to \mathbf{D}$ (branch, or cons).

- ► Token a^D: 0, C*0, C0*, C(C*0)0.
- $U^{\mathsf{D}} := \{a_1, \ldots, a_n\}$ consistent if
 - ▶ all *a_i* start with the same constructor,
 - ▶ (proper) tokens at *j*-th argument positions are consistent (example: {C*○, C○*}).
- U^D ⊢ a (entails) if
 - all $a_i \in U$ and a start with the same constructor,
 - (proper) tokens at *j*-th argument positions of *a_i* entail *j*-th argument of *a* (example: {*C*∗∘, *C*∘∗} ⊢ *C*∘∘).

- consistent and
- closed under entailment.

Tokens and entailment for ${\boldsymbol{\mathsf{N}}}$



 $\{a\} \vdash b$ iff there is a path from a (up) to b (down).

An ideal x^{ι} is cototal if every constructor tree $P(*) \in x$ has a " \succ_1 -predecessor" $P(C\vec{*}) \in x$; it is total if it is cototal and the relation \succ_1 on x is well-founded.

Examples. N:

Every total ideal is the deductive closure of a token S(S...(S0)...). The set of all tokens S(S...(S*)...) is a cototal ideal.

- Total ideal \sim finite derivation.
- Cototal ideal ~ finite or infinite "locally correct" derivation [Mints 78].
- Arbitrary ideal \sim incomplete derivation, with "holes".

An ideal x^{ι} is cototal if every constructor tree $P(*) \in x$ has a " \succ_1 -predecessor" $P(C\vec{*}) \in x$; it is total if it is cototal and the relation \succ_1 on x is well-founded.

Examples. N:

Every total ideal is the deductive closure of a token S(S...(S0)...). The set of all tokens S(S...(S*)...) is a cototal ideal.

- Total ideal \sim finite derivation.
- Cototal ideal ~ finite or infinite "locally correct" derivation [Mints 78].
- Arbitrary ideal \sim incomplete derivation, with "holes".

An ideal x^{ι} is cototal if every constructor tree $P(*) \in x$ has a " \succ_1 -predecessor" $P(C\vec{*}) \in x$; it is total if it is cototal and the relation \succ_1 on x is well-founded.

Examples. N:

► Every total ideal is the deductive closure of a token S(S...(S0)...). The set of all tokens S(S...(S*)...) is a cototal ideal.

- Total ideal \sim finite derivation.
- Cototal ideal ~ finite or infinite "locally correct" derivation [Mints 78].
- Arbitrary ideal \sim incomplete derivation, with "holes".

An ideal x^{ι} is cototal if every constructor tree $P(*) \in x$ has a " \succ_1 -predecessor" $P(C\vec{*}) \in x$; it is total if it is cototal and the relation \succ_1 on x is well-founded.

Examples. N:

► Every total ideal is the deductive closure of a token S(S...(S0)...). The set of all tokens S(S...(S*)...) is a cototal ideal.

- ► Total ideal ~ finite derivation.
- Cototal ideal ~ finite or infinite "locally correct" derivation [Mints 78].
- Arbitrary ideal \sim incomplete derivation, with "holes".

Ideals: partial continuous functionals $f^{\rho \to \sigma}$ (Scott, Ershov).

- Tokens of type $\rho \rightarrow \sigma$ are pairs (U, a) with $U \in \operatorname{Con}_{\rho}$.
- $\{(U_i, a_i) \mid i \in I\} \in \operatorname{Con}_{\rho \to \sigma}$ means

 $\forall_{J\subseteq I} (\bigcup_{j\in J} U_j \in \operatorname{Con}_{\rho} \to \{ a_j \mid j \in J \} \in \operatorname{Con}_{\sigma}).$

"Formal neighborhood".

• $W \vdash_{\rho \to \sigma} (U, a)$ means $WU \vdash_{\sigma} a$, where application WU of $W = \{ (U_i, a_i) \mid i \in I \}$ to U is $\{ a_i \mid U \vdash_{\rho} U_i \}$.

Application of $f^{\rho \to \sigma}$ to x^{ρ} is

$$f(x) := \{ a^{\sigma} \mid \exists_{U \subseteq x} (U, a) \in f \}.$$

Ideals: partial continuous functionals $f^{\rho \to \sigma}$ (Scott, Ershov).

- ▶ Tokens of type $\rho \rightarrow \sigma$ are pairs (U, a) with $U \in Con_{\rho}$.
- $\blacktriangleright \{ (U_i, a_i) \mid i \in I \} \in \operatorname{Con}_{\rho \to \sigma} \text{ means}$

 $\forall_{J\subseteq I} (\bigcup_{j\in J} U_j \in \operatorname{Con}_{\rho} \to \{ a_j \mid j \in J \} \in \operatorname{Con}_{\sigma}).$

"Formal neighborhood".

• $W \vdash_{\rho \to \sigma} (U, a)$ means $WU \vdash_{\sigma} a$, where application WU of $W = \{ (U_i, a_i) \mid i \in I \}$ to U is $\{ a_i \mid U \vdash_{\rho} U_i \}$.

Application of $f^{\rho \to \sigma}$ to x^{ρ} is

$$f(x) := \{ a^{\sigma} \mid \exists_{U \subseteq x} (U, a) \in f \}.$$

Ideals: partial continuous functionals $f^{\rho \to \sigma}$ (Scott, Ershov).

- Tokens of type $\rho \rightarrow \sigma$ are pairs (U, a) with $U \in \operatorname{Con}_{\rho}$.
- { $(U_i, a_i) \mid i \in I$ } $\in \operatorname{Con}_{\rho \to \sigma}$ means

 $\forall_{J\subseteq I} (\bigcup_{j\in J} U_j \in \operatorname{Con}_{\rho} \to \{ a_j \mid j \in J \} \in \operatorname{Con}_{\sigma}).$

"Formal neighborhood".

• $W \vdash_{\rho \to \sigma} (U, a)$ means $WU \vdash_{\sigma} a$, where application WU of $W = \{ (U_i, a_i) \mid i \in I \}$ to U is $\{ a_i \mid U \vdash_{\rho} U_i \}$.

Application of $f^{\rho \to \sigma}$ to x^{ρ} is

$$f(x) := \{ a^{\sigma} \mid \exists_{U \subseteq x} (U, a) \in f \}.$$

Ideals: partial continuous functionals $f^{\rho \to \sigma}$ (Scott, Ershov).

- Tokens of type $\rho \rightarrow \sigma$ are pairs (U, a) with $U \in \operatorname{Con}_{\rho}$.
- $\{(U_i, a_i) \mid i \in I\} \in \operatorname{Con}_{\rho \to \sigma}$ means

$$\forall_{J\subseteq I} (\bigcup_{j\in J} U_j \in \operatorname{Con}_{\rho} \to \{ a_j \mid j \in J \} \in \operatorname{Con}_{\sigma}).$$

"Formal neighborhood".

• $W \vdash_{\rho \to \sigma} (U, a)$ means $WU \vdash_{\sigma} a$, where application WU of $W = \{ (U_i, a_i) \mid i \in I \}$ to U is $\{ a_i \mid U \vdash_{\rho} U_i \}$.

Application of $f^{
ho
ightarrow \sigma}$ to $x^{
ho}$ is

$$f(x) := \{ a^{\sigma} \mid \exists_{U \subseteq x} (U, a) \in f \}.$$

Ideals: partial continuous functionals $f^{\rho \to \sigma}$ (Scott, Ershov).

- Tokens of type $\rho \rightarrow \sigma$ are pairs (U, a) with $U \in \operatorname{Con}_{\rho}$.
- $\{(U_i, a_i) \mid i \in I\} \in \operatorname{Con}_{\rho \to \sigma}$ means

$$\forall_{J\subseteq I} (\bigcup_{j\in J} U_j \in \operatorname{Con}_{\rho} \to \{ a_j \mid j \in J \} \in \operatorname{Con}_{\sigma}).$$

"Formal neighborhood".

• $W \vdash_{\rho \to \sigma} (U, a)$ means $WU \vdash_{\sigma} a$, where application WU of $W = \{ (U_i, a_i) \mid i \in I \}$ to U is $\{ a_i \mid U \vdash_{\rho} U_i \}$.

Application of $f^{\rho \to \sigma}$ to x^{ρ} is

$$f(x) := \{ a^{\sigma} \mid \exists_{U \subseteq x} (U, a) \in f \}.$$

Ideals: partial continuous functionals $f^{\rho \to \sigma}$ (Scott, Ershov).

- Tokens of type $\rho \rightarrow \sigma$ are pairs (U, a) with $U \in \operatorname{Con}_{\rho}$.
- $\{(U_i, a_i) \mid i \in I\} \in \operatorname{Con}_{\rho \to \sigma}$ means

$$\forall_{J\subseteq I} (\bigcup_{j\in J} U_j \in \operatorname{Con}_{\rho} \to \{ a_j \mid j \in J \} \in \operatorname{Con}_{\sigma}).$$

"Formal neighborhood".

•
$$W \vdash_{\rho \to \sigma} (U, a)$$
 means $WU \vdash_{\sigma} a$, where application WU of $W = \{ (U_i, a_i) \mid i \in I \}$ to U is $\{ a_i \mid U \vdash_{\rho} U_i \}$.

Application of $f^{\rho \to \sigma}$ to x^{ρ} is

$$f(x) := \{ a^{\sigma} \mid \exists_{U \subseteq x} (U, a) \in f \}.$$

Ideals: partial continuous functionals $f^{\rho \to \sigma}$ (Scott, Ershov).

- Tokens of type $\rho \rightarrow \sigma$ are pairs (U, a) with $U \in \operatorname{Con}_{\rho}$.
- $\{(U_i, a_i) \mid i \in I\} \in \operatorname{Con}_{\rho \to \sigma}$ means

$$\forall_{J\subseteq I} (\bigcup_{j\in J} U_j \in \operatorname{Con}_{\rho} \to \{ a_j \mid j \in J \} \in \operatorname{Con}_{\sigma}).$$

"Formal neighborhood".

• $W \vdash_{\rho \to \sigma} (U, a)$ means $WU \vdash_{\sigma} a$, where application WU of $W = \{ (U_i, a_i) \mid i \in I \}$ to U is $\{ a_i \mid U \vdash_{\rho} U_i \}$.

Application of $f^{\rho \to \sigma}$ to x^{ρ} is

$$f(x) := \{ a^{\sigma} \mid \exists_{U \subseteq x} (U, a) \in f \}.$$

A partial continuous functional f^{ρ} is computable if it is a (primitive) recursively enumerable set of tokens.

How to define computable functionals? By computation rules

$$D\vec{P}_i(\vec{y}_i) = M_i \qquad (i = 1, \dots, n)$$

with free variables of $\vec{P}_i(\vec{y}_i)$ and M_i among \vec{y}_i , where $\vec{P}_i(\vec{y}_i)$ are "constructor patterns".

Terms (a common extension of Gödel's T and Plotkin's PCF)

 $M, N ::= x^{\rho} \mid \mathbf{C}^{\rho} \mid D^{\rho} \mid (\lambda_{x^{\rho}} M^{\sigma})^{\rho \to \sigma} \mid (M^{\rho \to \sigma} N^{\rho})^{\sigma}.$

A partial continuous functional f^{ρ} is computable if it is a (primitive) recursively enumerable set of tokens.

How to define computable functionals? By computation rules

$$D\vec{P}_i(\vec{y}_i) = M_i$$
 $(i = 1, \dots, n)$

with free variables of $\vec{P}_i(\vec{y}_i)$ and M_i among \vec{y}_i , where $\vec{P}_i(\vec{y}_i)$ are "constructor patterns".

Terms (a common extension of Gödel's T and Plotkin's PCF)

 $M, N ::= x^{\rho} \mid \mathbf{C}^{\rho} \mid D^{\rho} \mid (\lambda_{x^{\rho}} M^{\sigma})^{\rho \to \sigma} \mid (M^{\rho \to \sigma} N^{\rho})^{\sigma}.$

A partial continuous functional f^{ρ} is computable if it is a (primitive) recursively enumerable set of tokens.

How to define computable functionals? By computation rules

 $DP_i(\vec{y}_i) = M_i$ $(i = 1, \dots, n)$

with free variables of $\vec{P}_i(\vec{y}_i)$ and M_i among \vec{y}_i , where $\vec{P}_i(\vec{y}_i)$ are "constructor patterns".

Terms (a common extension of Gödel's T and Plotkin's PCF)

 $M, N ::= x^{\rho} \mid C^{\rho} \mid D^{\rho} \mid (\lambda_{x^{\rho}} M^{\sigma})^{\rho \to \sigma} \mid (M^{\rho \to \sigma} N^{\rho})^{\sigma}.$

A partial continuous functional f^{ρ} is computable if it is a (primitive) recursively enumerable set of tokens.

How to define computable functionals? By computation rules

$$D\vec{P}_i(\vec{y}_i) = M_i \qquad (i = 1, \ldots, n)$$

with free variables of $\vec{P}_i(\vec{y}_i)$ and M_i among \vec{y}_i , where $\vec{P}_i(\vec{y}_i)$ are "constructor patterns".

Terms (a common extension of Gödel's ${
m T}$ and Plotkin's ${
m PCF})$

 $M, N ::= x^{\rho} \mid \mathbf{C}^{\rho} \mid D^{\rho} \mid (\lambda_{x^{\rho}} M^{\sigma})^{\rho \to \sigma} \mid (M^{\rho \to \sigma} N^{\rho})^{\sigma}.$

A partial continuous functional f^{ρ} is computable if it is a (primitive) recursively enumerable set of tokens.

How to define computable functionals? By computation rules

$$D\vec{P}_i(\vec{y}_i) = M_i \qquad (i = 1, \ldots, n)$$

with free variables of $\vec{P}_i(\vec{y}_i)$ and M_i among \vec{y}_i , where $\vec{P}_i(\vec{y}_i)$ are "constructor patterns".

Terms (a common extension of Gödel's T and Plotkin's PCF)

$$M, N ::= x^{\rho} \mid C^{\rho} \mid D^{\rho} \mid (\lambda_{x^{\rho}} M^{\sigma})^{\rho \to \sigma} \mid (M^{\rho \to \sigma} N^{\rho})^{\sigma}.$$

 $+: \mathbf{N} \rightarrow \mathbf{N} \rightarrow \mathbf{N}$ defined by n + 0 = n. $n + \mathrm{S}m = \mathrm{S}(n + m).$ $\mathcal{R}^{\tau}_{\mathsf{N}} \colon \mathsf{N} \to \tau \to (\mathsf{N} \to \tau \to \tau) \to \tau$ defined by

 $+: \mathbf{N} \rightarrow \mathbf{N} \rightarrow \mathbf{N}$ defined by n + 0 = n. $n + \mathrm{S}m = \mathrm{S}(n + m).$ $Y: (\tau \to \tau) \to \tau$ defined by Yf = f(Yf). $\mathcal{R}_{\mathbf{N}}^{\tau} \colon \mathbf{N} \to \tau \to (\mathbf{N} \to \tau \to \tau) \to \tau$ defined by

 $+: \mathbf{N} \rightarrow \mathbf{N} \rightarrow \mathbf{N}$ defined by n + 0 = n. $n + \mathrm{S}m = \mathrm{S}(n + m).$ $Y: (\tau \to \tau) \to \tau$ defined by Yf = f(Yf). $\mathcal{R}_{\mathbf{N}}^{\tau} \colon \mathbf{N} \to \tau \to (\mathbf{N} \to \tau \to \tau) \to \tau$ defined by $\mathcal{R}_{\mathbf{N}}^{\tau} 0 x f = x,$ $\mathcal{R}_{\mathbf{N}}^{\tau}(\mathbf{S}n)\mathbf{x}f = f\mathbf{x}(\mathcal{R}_{\mathbf{N}}^{\tau}n\mathbf{x}f).$

 $+: \mathbf{N} \rightarrow \mathbf{N} \rightarrow \mathbf{N}$ defined by n + 0 = n. $n + \mathrm{S}m = \mathrm{S}(n + m).$ Y: $(\tau \rightarrow \tau) \rightarrow \tau$ defined by Yf = f(Yf). $\mathcal{R}_{\mathbf{N}}^{\tau} \colon \mathbf{N} \to \tau \to (\mathbf{N} \to \tau \to \tau) \to \tau$ defined by $\mathcal{R}_{\mathbf{N}}^{\tau} 0 x f = x,$ $\mathcal{R}_{\mathbf{N}}^{\tau}(\mathbf{S}n)\mathbf{x}f = f\mathbf{x}(\mathcal{R}_{\mathbf{N}}^{\tau}n\mathbf{x}f).$

Denotational semantics

How to use computation rules to define a computable functional? Inductively define $(\vec{U}, a) \in [\![\lambda_{\vec{x}}M]\!]$ (FV(M) $\subseteq \{\vec{x}\}$). Case $\lambda_{\vec{x}, y, \vec{z}}M$ with \vec{x} free in M, but not y.

$$\frac{(\vec{U}, \vec{W}, a) \in \llbracket \lambda_{\vec{X}, \vec{z}} M \rrbracket}{(\vec{U}, V, \vec{W}, a) \in \llbracket \lambda_{\vec{X}, y, \vec{z}} M \rrbracket} (K).$$

Case $\lambda_{\vec{x}}M$ with \vec{x} the free variables in M.

$$\frac{U \vdash a}{(U,a) \in \llbracket \lambda_{\mathsf{X}} \mathsf{X} \rrbracket}(V), \quad \frac{(\vec{U}, V, a) \in \llbracket \lambda_{\vec{\mathsf{X}}} \mathsf{M} \rrbracket \quad (\vec{U}, V) \subseteq \llbracket \lambda_{\vec{\mathsf{X}}} \mathsf{N} \rrbracket}{(\vec{U}, a) \in \llbracket \lambda_{\vec{\mathsf{X}}}(\mathsf{MN}) \rrbracket}(A).$$

For every constructor C and defined constant D:

$$\frac{\vec{U}\vdash\vec{a^*}}{(\vec{U},\mathrm{C}\vec{a^*})\in\llbracket\mathrm{C}\rrbracket}(\mathrm{C}), \quad \frac{(\vec{V},a)\in\llbracket\lambda_{\vec{X}}M\rrbracket \quad \vec{U}\vdash\vec{P}(\vec{V})}{(\vec{U},a)\in\llbracketD\rrbracket}(D),$$

with one rule (D) for every defining equation $D\vec{P}(\vec{x}) = M$.

Denotational semantics

How to use computation rules to define a computable functional?

Inductively define $(\vec{U}, a) \in [\![\lambda_{\vec{x}}M]\!]$ (FV(M) $\subseteq \{\vec{x}\}$). Case $\lambda_{\vec{x},v,\vec{z}}M$ with \vec{x} free in M, but not y.

$$\frac{(\vec{U}, \vec{W}, a) \in \llbracket \lambda_{\vec{X}, \vec{z}} M \rrbracket}{(\vec{U}, V, \vec{W}, a) \in \llbracket \lambda_{\vec{X}, y, \vec{z}} M \rrbracket} (K).$$

Case $\lambda_{\vec{x}}M$ with \vec{x} the free variables in M.

$$\frac{U \vdash a}{(U,a) \in \llbracket \lambda_{x} x \rrbracket}(V), \quad \frac{(\vec{U}, V, a) \in \llbracket \lambda_{\vec{x}} M \rrbracket \quad (\vec{U}, V) \subseteq \llbracket \lambda_{\vec{x}} N \rrbracket}{(\vec{U}, a) \in \llbracket \lambda_{\vec{x}}(MN) \rrbracket}(A).$$

For every constructor C and defined constant D:

$$\frac{\vec{U}\vdash\vec{a^*}}{(\vec{U},\mathrm{C}\vec{a^*})\in[\![\mathrm{C}]\!]}(\mathrm{C}), \quad \frac{(\vec{V},a)\in[\![\lambda_{\vec{X}}M]\!] \quad \vec{U}\vdash\vec{P}(\vec{V})}{(\vec{U},a)\in[\![D]\!]}(D),$$

with one rule (D) for every defining equation $D\vec{P}(\vec{x}) = M$.

How to use computation rules to define a computable functional? Inductively define $(\vec{U}, a) \in [\![\lambda_{\vec{x}}M]\!]$ (FV(M) $\subseteq \{\vec{x}\}$).

Case $\lambda_{\vec{x},y,\vec{z}}M$ with \vec{x} free in M, but not y.

$$\frac{(\vec{U}, \vec{W}, a) \in \llbracket \lambda_{\vec{X}, \vec{z}} M \rrbracket}{(\vec{U}, V, \vec{W}, a) \in \llbracket \lambda_{\vec{X}, y, \vec{z}} M \rrbracket} (K).$$

Case $\lambda_{\vec{x}}M$ with \vec{x} the free variables in M.

$$\frac{U \vdash a}{(U,a) \in \llbracket \lambda_{x} x \rrbracket}(V), \quad \frac{(\vec{U}, V, a) \in \llbracket \lambda_{\vec{x}} M \rrbracket \quad (\vec{U}, V) \subseteq \llbracket \lambda_{\vec{x}} N \rrbracket}{(\vec{U}, a) \in \llbracket \lambda_{\vec{x}}(MN) \rrbracket}(A).$$

For every constructor C and defined constant D:

$$\frac{\vec{U}\vdash\vec{a^*}}{(\vec{U},\mathrm{C}\vec{a^*})\in\llbracket\mathrm{C}\rrbracket}(\mathrm{C}), \quad \frac{(\vec{V},a)\in\llbracket\lambda_{\vec{X}}M\rrbracket \quad \vec{U}\vdash\vec{P}(\vec{V})}{(\vec{U},a)\in\llbracketD\rrbracket}(D),$$

How to use computation rules to define a computable functional? Inductively define $(\vec{U}, a) \in [\![\lambda_{\vec{x}}M]\!]$ (FV(M) $\subseteq \{\vec{x}\}$). Case $\lambda_{\vec{x}, v, \vec{z}}M$ with \vec{x} free in M, but not y.

$$\frac{(\vec{U},\vec{W},a)\in \llbracket\lambda_{\vec{x},\vec{z}}M\rrbracket}{(\vec{U},V,\vec{W},a)\in \llbracket\lambda_{\vec{x},y,\vec{z}}M\rrbracket}(K).$$

Case $\lambda_{\vec{x}}M$ with \vec{x} the free variables in M.

$$\frac{U \vdash a}{(U,a) \in \llbracket \lambda_{x} x \rrbracket}(V), \quad \frac{(\vec{U}, V, a) \in \llbracket \lambda_{\vec{x}} M \rrbracket \quad (\vec{U}, V) \subseteq \llbracket \lambda_{\vec{x}} N \rrbracket}{(\vec{U}, a) \in \llbracket \lambda_{\vec{x}}(MN) \rrbracket}(A).$$

For every constructor C and defined constant D:

$$\frac{\vec{U}\vdash\vec{a^*}}{(\vec{U},\mathrm{C}\vec{a^*})\in\llbracket\mathrm{C}\rrbracket}(\mathrm{C}), \quad \frac{(\vec{V},a)\in\llbracket\lambda_{\vec{X}}M\rrbracket \quad \vec{U}\vdash\vec{P}(\vec{V})}{(\vec{U},a)\in\llbracketD\rrbracket}(D),$$

How to use computation rules to define a computable functional? Inductively define $(\vec{U}, a) \in [\![\lambda_{\vec{x}}M]\!]$ (FV(M) $\subseteq \{\vec{x}\}$). *Case* $\lambda_{\vec{x}, v, \vec{z}}M$ with \vec{x} free in M, but not y.

$$\frac{(\vec{U},\vec{W},a)\in \llbracket \lambda_{\vec{x},\vec{z}}M \rrbracket}{(\vec{U},V,\vec{W},a)\in \llbracket \lambda_{\vec{x},y,\vec{z}}M \rrbracket}(K).$$

Case $\lambda_{\vec{x}}M$ with \vec{x} the free variables in M.

$$\frac{U\vdash a}{(U,a)\in \llbracket\lambda_{x}x\rrbracket}(V), \quad \frac{(\vec{U},V,a)\in \llbracket\lambda_{\vec{x}}M\rrbracket \quad (\vec{U},V)\subseteq \llbracket\lambda_{\vec{x}}N\rrbracket}{(\vec{U},a)\in \llbracket\lambda_{\vec{x}}(MN)\rrbracket}(A).$$

For every constructor C and defined constant D:

$$\frac{\vec{U} \vdash \vec{a^*}}{(\vec{U}, C\vec{a^*}) \in \llbracket C \rrbracket}(C), \quad \frac{(\vec{V}, a) \in \llbracket \lambda_{\vec{X}} M \rrbracket \quad \vec{U} \vdash \vec{P}(\vec{V})}{(\vec{U}, a) \in \llbracket D \rrbracket}(D),$$

How to use computation rules to define a computable functional? Inductively define $(\vec{U}, a) \in [\![\lambda_{\vec{x}}M]\!]$ (FV(M) $\subseteq \{\vec{x}\}$). Case $\lambda_{\vec{x}, y, \vec{z}}M$ with \vec{x} free in M, but not y.

$$\frac{(\vec{U},\vec{W},a)\in \llbracket \lambda_{\vec{x},\vec{z}}M \rrbracket}{(\vec{U},V,\vec{W},a)\in \llbracket \lambda_{\vec{x},y,\vec{z}}M \rrbracket}(K).$$

Case $\lambda_{\vec{x}}M$ with \vec{x} the free variables in M.

$$\frac{U\vdash a}{(U,a)\in \llbracket\lambda_{x}x\rrbracket}(V), \quad \frac{(\vec{U},V,a)\in \llbracket\lambda_{\vec{x}}M\rrbracket \quad (\vec{U},V)\subseteq \llbracket\lambda_{\vec{x}}N\rrbracket}{(\vec{U},a)\in \llbracket\lambda_{\vec{x}}(MN)\rrbracket}(A).$$

For every constructor C and defined constant D:

$$\frac{\vec{U} \vdash \vec{a^*}}{(\vec{U}, C\vec{a^*}) \in \llbracket C \rrbracket} (C), \quad \frac{(\vec{V}, a) \in \llbracket \lambda_{\vec{X}} M \rrbracket \quad \vec{U} \vdash \vec{P}(\vec{V})}{(\vec{U}, a) \in \llbracket D \rrbracket} (D),$$

Properties of the denotational semantics

- The value is preserved under standard β, η-conversion and the computation rules.
- ► An adequacy theorem holds: whenever a closed term M^ℓ has a proper token in its denotation [[M]], then M (head) reduces to a constructor term entailing this token.

Properties of the denotational semantics

- The value is preserved under standard β, η-conversion and the computation rules.
- ► An adequacy theorem holds: whenever a closed term M^ℓ has a proper token in its denotation [[M]], then M (head) reduces to a constructor term entailing this token.

Properties of the denotational semantics

- The value is preserved under standard β, η-conversion and the computation rules.
- ► An adequacy theorem holds: whenever a closed term M^ℓ has a proper token in its denotation [[M]], then M (head) reduces to a constructor term entailing this token.

A variant of HA^{ω} .

Formulas A and predicates P are defined simultaneously

 $\begin{array}{l} A,B ::= P\vec{r} \mid A \to B \mid \forall_{x}A \\ P ::= X \mid \{ \vec{x} \mid A \} \mid I \quad (I \text{ inductively defined}). \end{array}$

 $\forall_X A$ not allowed, since this would be impredicative: in the predicate existence axiom $P := \{ \vec{x} \mid A \}$ the formula A could contain quantifiers with the newly created P in its range.

A variant of HA^{ω} .

Formulas A and predicates P are defined simultaneously

 $A, B ::= P\vec{r} \mid A \to B \mid \forall_x A$ $P ::= X \mid \{ \vec{x} \mid A \} \mid I \qquad (I \text{ inductively defined}).$

 $\forall_X A$ not allowed, since this would be impredicative: in the predicate existence axiom $P := \{ \vec{x} \mid A \}$ the formula A could contain quantifiers with the newly created P in its range.

A variant of HA^{ω} .

Formulas A and predicates P are defined simultaneously

$\begin{array}{l} A,B ::= P\vec{r} \mid A \rightarrow B \mid \forall_{x}A \\ P ::= X \mid \{ \vec{x} \mid A \} \mid I \quad (I \text{ inductively defined}). \end{array}$

 $\forall_X A$ not allowed, since this would be impredicative: in the predicate existence axiom $P := \{ \vec{x} \mid A \}$ the formula A could contain quantifiers with the newly created P in its range.

A variant of HA^{ω} .

Formulas A and predicates P are defined simultaneously

 $\begin{array}{l} A,B ::= P\vec{r} \mid A \to B \mid \forall_x A \\ P ::= X \mid \{ \vec{x} \mid A \} \mid I \quad (I \text{ inductively defined}). \end{array}$

 $\forall_X A \text{ not}$ allowed, since this would be impredicative: in the predicate existence axiom $P := \{ \vec{x} \mid A \}$ the formula A could contain quantifiers with the newly created P in its range.

A variant of HA^{ω} .

Formulas A and predicates P are defined simultaneously

 $\begin{array}{l} A,B ::= P\vec{r} \mid A \to B \mid \forall_x A \\ P ::= X \mid \{ \vec{x} \mid A \} \mid I \quad (I \text{ inductively defined}). \end{array}$

 $\forall_X A \text{ not}$ allowed, since this would be impredicative: in the predicate existence axiom $P := \{ \vec{x} \mid A \}$ the formula A could contain quantifiers with the newly created P in its range.

Have \rightarrow^{\pm} , \forall^{\pm} , I^{\pm} . BHK-interpretation:

- p proves A → B iff p is a construction transforming any proof q of A into a proof p(q) of B.
- ▶ *p* proves $\forall_{x^{\rho}} A(x)$ iff *p* is a construction such that for all a^{ρ} , p(a) proves A(a).

Leaves open:

- ▶ What is a "construction"?
- What is a proof of a prime formula?

Proposal:

- Construction: computable functional.
- Proof of a prime formula $I\vec{r}$: generation tree.

Have \rightarrow^{\pm} , \forall^{\pm} , I^{\pm} . BHK-interpretation:

- p proves A → B iff p is a construction transforming any proof q of A into a proof p(q) of B.
- p proves ∀_x A(x) iff p is a construction such that for all a^ρ, p(a) proves A(a).

Leaves open:

- ▶ What is a "construction"?
- What is a proof of a prime formula?

Proposal:

- Construction: computable functional.
- Proof of a prime formula $I\vec{r}$: generation tree.

Have \rightarrow^{\pm} , \forall^{\pm} , I^{\pm} . BHK-interpretation:

- p proves A → B iff p is a construction transforming any proof q of A into a proof p(q) of B.
- p proves ∀_x A(x) iff p is a construction such that for all a^ρ, p(a) proves A(a).

Leaves open:

- ▶ What is a "construction"?
- What is a proof of a prime formula?

Proposal:

- Construction: computable functional.
- Proof of a prime formula $I\vec{r}$: generation tree.

Have \rightarrow^{\pm} , \forall^{\pm} , I^{\pm} . BHK-interpretation:

- p proves A → B iff p is a construction transforming any proof q of A into a proof p(q) of B.
- p proves ∀_x^ρA(x) iff p is a construction such that for all a^ρ, p(a) proves A(a).

Leaves open:

- What is a "construction"?
- What is a proof of a prime formula?

Proposal:

- Construction: computable functional.
- Proof of a prime formula $I\vec{r}$: generation tree.

Have \rightarrow^{\pm} , \forall^{\pm} , I^{\pm} . BHK-interpretation:

- p proves A → B iff p is a construction transforming any proof q of A into a proof p(q) of B.
- p proves ∀_x^ρA(x) iff p is a construction such that for all a^ρ, p(a) proves A(a).

Leaves open:

- What is a "construction"?
- What is a proof of a prime formula?

Proposal:

- Construction: computable functional.
- Proof of a prime formula $I\vec{r}$: generation tree.

Have \rightarrow^{\pm} , \forall^{\pm} , I^{\pm} . BHK-interpretation:

- p proves A → B iff p is a construction transforming any proof q of A into a proof p(q) of B.
- p proves ∀_x A(x) iff p is a construction such that for all a^ρ, p(a) proves A(a).

Leaves open:

- What is a "construction"?
- What is a proof of a prime formula?

Proposal:

- Construction: computable functional.
- Proof of a prime formula $I\vec{r}$: generation tree.

Have \rightarrow^{\pm} , \forall^{\pm} , I^{\pm} . BHK-interpretation:

- p proves A → B iff p is a construction transforming any proof q of A into a proof p(q) of B.
- p proves ∀_x A(x) iff p is a construction such that for all a^ρ, p(a) proves A(a).

Leaves open:

- What is a "construction"?
- What is a proof of a prime formula?

Proposal:

- Construction: computable functional.
- Proof of a prime formula $I\vec{r}$: generation tree.

Distinguish non-computational (n.c.) (or Harrop) and computationally relevant (c.r.) formulas. Example:

- r = s is n.c.
- ▶ Even(n) is c.r.

Extend the use of $\rho \rightarrow \sigma$ to the "nulltype symbol" $\circ:$

$$(\rho \to \circ) := \circ, \quad (\circ \to \sigma) := \sigma, \quad (\circ \to \circ) := \circ.$$

Define the type $\tau(A)$ of a formula A by

$$\tau(I\vec{r}) = \begin{cases} \iota_I & \text{if } I \text{ is c.r.,} \\ \circ & \text{if } I \text{ is n.c.,} \end{cases}$$
$$\tau(A \to B) := \tau(A) \to \tau(B),$$
$$\tau(\forall_{x^{\rho}}A) := \rho \to \tau(A)$$

Distinguish non-computational (n.c.) (or Harrop) and computationally relevant (c.r.) formulas. Example:

r = s is n.c.

• Even(n) is c.r.

Extend the use of $\rho \rightarrow \sigma$ to the "nulltype symbol" $\circ:$

$$(\rho \to \circ) := \circ, \quad (\circ \to \sigma) := \sigma, \quad (\circ \to \circ) := \circ.$$

Define the type $\tau(A)$ of a formula A by

$$\tau(I\vec{r}) = \begin{cases} \iota_I & \text{if } I \text{ is c.r.,} \\ \circ & \text{if } I \text{ is n.c.,} \end{cases}$$
$$\tau(A \to B) := \tau(A) \to \tau(B),$$
$$\tau(\forall_{x^{\rho}}A) := \rho \to \tau(A)$$

Distinguish non-computational (n.c.) (or Harrop) and computationally relevant (c.r.) formulas. Example:

- r = s is n.c.
- ▶ Even(*n*) is c.r.

Extend the use of $\rho \rightarrow \sigma$ to the "nulltype symbol" $\circ:$

$$(\rho \to \circ) := \circ, \quad (\circ \to \sigma) := \sigma, \quad (\circ \to \circ) := \circ.$$

Define the type $\tau(A)$ of a formula A by

$$\tau(I\vec{r}) = \begin{cases} \iota_I & \text{if } I \text{ is c.r.,} \\ \circ & \text{if } I \text{ is n.c.,} \end{cases}$$
$$\tau(A \to B) := \tau(A) \to \tau(B),$$
$$\tau(\forall_{x^{\rho}}A) := \rho \to \tau(A)$$

Distinguish non-computational (n.c.) (or Harrop) and computationally relevant (c.r.) formulas. Example:

- r = s is n.c.
- Even(n) is c.r.

Extend the use of $\rho \rightarrow \sigma$ to the "nulltype symbol" $\circ:$

$$(\rho \to \circ) := \circ, \quad (\circ \to \sigma) := \sigma, \quad (\circ \to \circ) := \circ.$$

Define the type $\tau(A)$ of a formula A by

$$\tau(I\vec{r}) = \begin{cases} \iota_I & \text{if } I \text{ is c.r.,} \\ \circ & \text{if } I \text{ is n.c.,} \end{cases}$$
$$\tau(A \to B) := \tau(A) \to \tau(B),$$
$$\tau(\forall_{x^{\rho}}A) := \rho \to \tau(A)$$

Distinguish non-computational (n.c.) (or Harrop) and computationally relevant (c.r.) formulas. Example:

- r = s is n.c.
- Even(n) is c.r.

Extend the use of $\rho \rightarrow \sigma$ to the "nulltype symbol" $\circ:$

$$(\rho \to \circ) := \circ, \quad (\circ \to \sigma) := \sigma, \quad (\circ \to \circ) := \circ.$$

Define the type $\tau(A)$ of a formula A by

$$\tau(I\vec{r}) = \begin{cases} \iota_I & \text{if } I \text{ is c.r.,} \\ \circ & \text{if } I \text{ is n.c.,} \end{cases}$$
$$\tau(A \to B) := \tau(A) \to \tau(B),$$
$$\tau(\forall_{x^{\rho}}A) := \rho \to \tau(A)$$

Introduce a special nullterm symbol ε to be used as a "realizer" for n.c. formulas. Extend term application to ε by

 $\varepsilon t := \varepsilon, \quad t\varepsilon := t, \quad \varepsilon\varepsilon := \varepsilon.$

Definition $(t \mathbf{r} A, t \text{ realizes } A)$

$$t \mathbf{r} \ I \vec{s} := \begin{cases} I^{\mathbf{r}} t \vec{s} & \text{if } I \text{ is c.r. } (I^{\mathbf{r}} \text{ inductively defined}), \\ I \vec{s} & \text{if } I \text{ is n.c.}, \end{cases}$$
$$t \mathbf{r} \ (A \to B) := \forall_{x} (x \mathbf{r} A \to tx \mathbf{r} B), \\ t \mathbf{r} \ \forall_{x} A := \forall_{x} (tx \mathbf{r} A). \end{cases}$$

Introduce a special nullterm symbol ε to be used as a "realizer" for n.c. formulas. Extend term application to ε by

 $\varepsilon t := \varepsilon, \quad t\varepsilon := t, \quad \varepsilon\varepsilon := \varepsilon.$

Definition $(t \mathbf{r} A, t \text{ realizes } A)$

$$t \mathbf{r} \ I \vec{s} := \begin{cases} I^r t \vec{s} & \text{if } I \text{ is c.r. } (I^r \text{ inductively defined}), \\ I \vec{s} & \text{if } I \text{ is n.c.}, \end{cases}$$
$$t \mathbf{r} \ (A \to B) := \forall_x (x \mathbf{r} A \to tx \mathbf{r} B), \\ t \mathbf{r} \ \forall_x A := \forall_x (tx \mathbf{r} A). \end{cases}$$

Introduce a special nullterm symbol ε to be used as a "realizer" for n.c. formulas. Extend term application to ε by

 $\varepsilon t := \varepsilon, \quad t\varepsilon := t, \quad \varepsilon\varepsilon := \varepsilon.$

Definition $(t \mathbf{r} A, t \text{ realizes } A)$

$$t \mathbf{r} \ I \vec{s} := \begin{cases} I^{\mathbf{r}} t \vec{s} & \text{if } I \text{ is c.r. } (I^{\mathbf{r}} \text{ inductively defined}), \\ I \vec{s} & \text{if } I \text{ is n.c.}, \end{cases}$$
$$t \mathbf{r} \ (A \to B) := \forall_{x} (x \mathbf{r} A \to tx \mathbf{r} B), \\ t \mathbf{r} \ \forall_{x} A := \forall_{x} (tx \mathbf{r} A). \end{cases}$$

Introduce a special nullterm symbol ε to be used as a "realizer" for n.c. formulas. Extend term application to ε by

 $\varepsilon t := \varepsilon, \quad t\varepsilon := t, \quad \varepsilon\varepsilon := \varepsilon.$

Definition $(t \mathbf{r} A, t \text{ realizes } A)$

$$t \mathbf{r} \ I \vec{s} := \begin{cases} I^{\mathbf{r}} t \vec{s} & \text{if } I \text{ is c.r. } (I^{\mathbf{r}} \text{ inductively defined}), \\ I \vec{s} & \text{if } I \text{ is n.c.}, \end{cases}$$
$$t \mathbf{r} \ (A \to B) := \forall_{x} (x \mathbf{r} A \to tx \mathbf{r} B), \\ t \mathbf{r} \ \forall_{x} A := \forall_{x} (tx \mathbf{r} A). \end{cases}$$

Introduce a special nullterm symbol ε to be used as a "realizer" for n.c. formulas. Extend term application to ε by

 $\varepsilon t := \varepsilon, \quad t\varepsilon := t, \quad \varepsilon\varepsilon := \varepsilon.$

Definition $(t \mathbf{r} A, t \text{ realizes } A)$

$$t \mathbf{r} \ I \vec{s} := \begin{cases} I^{\mathbf{r}} t \vec{s} & \text{if } I \text{ is c.r. } (I^{\mathbf{r}} \text{ inductively defined}), \\ I \vec{s} & \text{if } I \text{ is n.c.}, \end{cases}$$
$$t \mathbf{r} \ (A \to B) := \forall_{x} (x \mathbf{r} A \to t x \mathbf{r} B), \\ t \mathbf{r} \ \forall_{x} A := \forall_{x} (t x \mathbf{r} A). \end{cases}$$

For a derivation M of a formula A define its extracted term et(M), of type $\tau(A)$. For M^A with A n.c. let $et(M^A) := \varepsilon$. Else

$$\begin{aligned} &\text{et}(u^A) &:= x_u^{\tau(A)} \quad (x_u^{\tau(A)} \text{ uniquely associated to } u^A), \\ &\text{et}((\lambda_{u^A} M^B)^{A \to B}) &:= \lambda_{x_u^{\tau(A)}} \text{et}(M), \\ &\text{et}((M^{A \to B} N^A)^B) &:= \text{et}(M) \text{et}(N), \\ &\text{et}((\lambda_{x^{\rho}} M^A)^{\forall_x A}) &:= \lambda_{x^{\rho}} \text{et}(M), \\ &\text{et}((M^{\forall_x A(x)} r)^{A(r)}) &:= \text{et}(M)r. \end{aligned}$$

Extracted terms for the axioms: let *I* be c.r.

$$\operatorname{et}(I_i^+) := \operatorname{C}_i, \qquad \operatorname{et}(I^-) := \mathcal{R},$$

where both the constructor C_i and the recursion operator \mathcal{R} refer to the algebra ι_I associated with *I*.

For a derivation M of a formula A define its extracted term et(M), of type $\tau(A)$. For M^A with A n.c. let $et(M^A) := \varepsilon$. Else

$$\begin{aligned} &\text{et}(u^A) &:= x_u^{\tau(A)} \quad (x_u^{\tau(A)} \text{ uniquely associated to } u^A), \\ &\text{et}((\lambda_{u^A} M^B)^{A \to B}) &:= \lambda_{x_u^{\tau(A)}} \text{et}(M), \\ &\text{et}((M^{A \to B} N^A)^B) &:= \text{et}(M) \text{et}(N), \\ &\text{et}((\lambda_{x^{\rho}} M^A)^{\forall_x A}) &:= \lambda_{x^{\rho}} \text{et}(M), \\ &\text{et}((M^{\forall_x A(x)} r)^{A(r)}) &:= \text{et}(M)r. \end{aligned}$$

Extracted terms for the axioms: let *I* be c.r.

$$\operatorname{et}(I_i^+) := \operatorname{C}_i, \qquad \operatorname{et}(I^-) := \mathcal{R},$$

where both the constructor C_i and the recursion operator \mathcal{R} refer to the algebra ι_I associated with *I*.

For a derivation M of a formula A define its extracted term et(M), of type $\tau(A)$. For M^A with A n.c. let $et(M^A) := \varepsilon$. Else

$$\begin{aligned} &\text{et}(u^A) &:= x_u^{\tau(A)} \quad (x_u^{\tau(A)} \text{ uniquely associated to } u^A), \\ &\text{et}((\lambda_{u^A} M^B)^{A \to B}) &:= \lambda_{x_u^{\tau(A)}} \text{et}(M), \\ &\text{et}((M^{A \to B} N^A)^B) &:= \text{et}(M) \text{et}(N), \\ &\text{et}((\lambda_{x^{\rho}} M^A)^{\forall_x A}) &:= \lambda_{x^{\rho}} \text{et}(M), \\ &\text{et}((M^{\forall_x A(x)} r)^{A(r)}) &:= \text{et}(M)r. \end{aligned}$$

Extracted terms for the axioms: let *I* be c.r.

$$\operatorname{et}(I_i^+) := \operatorname{C}_i, \qquad \operatorname{et}(I^-) := \mathcal{R},$$

where both the constructor C_i and the recursion operator ${\cal R}$ refer to the algebra ι_l associated with *l*.

For a derivation M of a formula A define its extracted term et(M), of type $\tau(A)$. For M^A with A n.c. let $et(M^A) := \varepsilon$. Else

$$\begin{split} &\text{et}(u^A) &:= x_u^{\tau(A)} \quad (x_u^{\tau(A)} \text{ uniquely associated to } u^A), \\ &\text{et}((\lambda_{u^A} M^B)^{A \to B}) &:= \lambda_{x_u^{\tau(A)}} \text{et}(M), \\ &\text{et}((M^{A \to B} N^A)^B) &:= \text{et}(M) \text{et}(N), \\ &\text{et}((\lambda_{x^{\rho}} M^A)^{\forall_x A}) &:= \lambda_{x^{\rho}} \text{et}(M), \\ &\text{et}((M^{\forall_x A(x)} r)^{A(r)}) &:= \text{et}(M)r. \end{split}$$

Extracted terms for the axioms: let *I* be c.r.

$$\operatorname{et}(I_i^+) := \operatorname{C}_i, \qquad \operatorname{et}(I^-) := \mathcal{R},$$

where both the constructor C_i and the recursion operator \mathcal{R} refer to the algebra ι_I associated with *I*.

For a derivation M of a formula A define its extracted term et(M), of type $\tau(A)$. For M^A with A n.c. let $et(M^A) := \varepsilon$. Else

$$\begin{split} &\text{et}(u^A) &:= x_u^{\tau(A)} \quad (x_u^{\tau(A)} \text{ uniquely associated to } u^A), \\ &\text{et}((\lambda_{u^A} M^B)^{A \to B}) &:= \lambda_{x_u^{\tau(A)}} \text{et}(M), \\ &\text{et}((M^{A \to B} N^A)^B) &:= \text{et}(M) \text{et}(N), \\ &\text{et}((\lambda_{x^\rho} M^A)^{\forall_x A}) &:= \lambda_{x^\rho} \text{et}(M), \\ &\text{et}((M^{\forall_x A(x)} r)^{A(r)}) &:= \text{et}(M) r. \end{split}$$

Extracted terms for the axioms: let I be c.r.

$$\operatorname{et}(I_i^+) := \operatorname{C}_i, \qquad \operatorname{et}(I^-) := \mathcal{R},$$

where both the constructor C_i and the recursion operator \mathcal{R} refer to the algebra ι_I associated with I.

For a derivation M of a formula A define its extracted term et(M), of type $\tau(A)$. For M^A with A n.c. let $et(M^A) := \varepsilon$. Else

$$\begin{split} &\text{et}(u^A) &:= x_u^{\tau(A)} \quad (x_u^{\tau(A)} \text{ uniquely associated to } u^A), \\ &\text{et}((\lambda_{u^A} M^B)^{A \to B}) &:= \lambda_{x_u^{\tau(A)}} \text{et}(M), \\ &\text{et}((M^{A \to B} N^A)^B) &:= \text{et}(M) \text{et}(N), \\ &\text{et}((\lambda_{x^{\rho}} M^A)^{\forall_x A}) &:= \lambda_{x^{\rho}} \text{et}(M), \\ &\text{et}((M^{\forall_x A(x)} r)^{A(r)}) &:= \text{et}(M)r. \end{split}$$

Extracted terms for the axioms: let I be c.r.

$$\operatorname{et}(I_i^+) := \operatorname{C}_i, \qquad \operatorname{et}(I^-) := \mathcal{R},$$

where both the constructor C_i and the recursion operator \mathcal{R} refer to the algebra ι_I associated with I.

Relation of TCF to type theory

- Main difference: partial functionals are first class citizens.
- "Logic enriched": Formulas and types kept separate.
- Minimal logic: →, ∀ only. x = y (Leibniz equality), ∃, ∨, ∧ inductively defined (Martin-Löf).
- $\bot := ($ False = True). Ex-falso-quodlibet: $\bot \to A$ provable.
- ▶ "Decorations" \rightarrow^{nc} , \forall^{nc} (i) allow abstract theory (ii) remove unused data.

Main difference: partial functionals are first class citizens.

- "Logic enriched": Formulas and types kept separate.
- Minimal logic: →, ∀ only. x = y (Leibniz equality), ∃, ∨, ∧ inductively defined (Martin-Löf).
- $\bot := ($ False = True). Ex-falso-quodlibet: $\bot \to A$ provable.
- "Decorations" →^{nc}, ∀^{nc} (i) allow abstract theory (ii) remove unused data.

- Main difference: partial functionals are first class citizens.
- "Logic enriched": Formulas and types kept separate.
- Minimal logic: →, ∀ only. x = y (Leibniz equality), ∃, ∨, ∧ inductively defined (Martin-Löf).
- $\bot := (False = True)$. Ex-falso-quodlibet: $\bot \to A$ provable.
- "Decorations" →^{nc}, ∀^{nc} (i) allow abstract theory (ii) remove unused data.

- Main difference: partial functionals are first class citizens.
- "Logic enriched": Formulas and types kept separate.
- Minimal logic: →, ∀ only. x = y (Leibniz equality), ∃, ∨, ∧ inductively defined (Martin-Löf).
- ▶ $\bot := (False = True)$. Ex-falso-quodlibet: $\bot \to A$ provable.
- ▶ "Decorations" \rightarrow^{nc} , \forall^{nc} (i) allow abstract theory (ii) remove unused data.

- Main difference: partial functionals are first class citizens.
- "Logic enriched": Formulas and types kept separate.
- Minimal logic: →, ∀ only. x = y (Leibniz equality), ∃, ∨, ∧ inductively defined (Martin-Löf).
- $\perp := (False = True)$. Ex-falso-quodlibet: $\perp \rightarrow A$ provable.
- "Decorations" →^{nc}, ∀^{nc} (i) allow abstract theory (ii) remove unused data.

- Main difference: partial functionals are first class citizens.
- "Logic enriched": Formulas and types kept separate.
- Minimal logic: →, ∀ only. x = y (Leibniz equality), ∃, ∨, ∧ inductively defined (Martin-Löf).
- $\perp := (False = True)$. Ex-falso-quodlibet: $\perp \rightarrow A$ provable.
- "Decorations" →^{nc}, ∀^{nc} (i) allow abstract theory (ii) remove unused data.

- Formalization of an abstract theory of (uniformly) continuous real functions f: I → I (I := [-1, 1]).
- Let Cf express that f is a continuous real function. Assume the abstract theory proves

$$Cf \to \forall_n \exists_m \underbrace{\forall_a \exists_b (f[I_{a,m}] \subseteq I_{b,n})}_{B_{m,n}f} \quad \text{with } I_{b,n} := [b - \frac{1}{2^n}, b + \frac{1}{2^n}]$$

Then

 $n \mapsto m$ modulus of (uniform) continuity (ω) $n, a \mapsto b$ approximating rational function (h)

- Formalization of an abstract theory of (uniformly) continuous real functions f: I → I (I := [-1, 1]).
- ▶ Let Cf express that f is a continuous real function. Assume the abstract theory proves

$$Cf \to \forall_n \exists_m \underbrace{\forall_a \exists_b (f[I_{a,m}] \subseteq I_{b,n})}_{B_{m,n}f} \quad \text{with } I_{b,n} := [b - \frac{1}{2^n}, b + \frac{1}{2^n}]$$

Then

 $n \mapsto m$ modulus of (uniform) continuity (ω) $n, a \mapsto b$ approximating rational function (h)

- Formalization of an abstract theory of (uniformly) continuous real functions f: I → I (I := [-1, 1]).
- Let Cf express that f is a continuous real function. Assume the abstract theory proves

$$Cf \to \forall_n \exists_m \underbrace{\forall_a \exists_b (f[I_{a,m}] \subseteq I_{b,n})}_{B_{m,n}f} \quad \text{with } I_{b,n} := [b - \frac{1}{2^n}, b + \frac{1}{2^n}]$$

Then

 $n \mapsto m$ modulus of (uniform) continuity (ω) $n, a \mapsto b$ approximating rational function (h)

- Formalization of an abstract theory of (uniformly) continuous real functions f: I → I (I := [-1, 1]).
- Let Cf express that f is a continuous real function. Assume the abstract theory proves

$$Cf \to \forall_n \exists_m \underbrace{\forall_a \exists_b (f[I_{a,m}] \subseteq I_{b,n})}_{B_{m,n}f} \quad \text{with } I_{b,n} := [b - \frac{1}{2^n}, b + \frac{1}{2^n}]$$

Then

 $n \mapsto m$ modulus of (uniform) continuity (ω) $n, a \mapsto b$ approximating rational function (h)

Read_X and its witnesses

Inductively define a predicate Read_X of arity (φ) by the clauses

$$\begin{split} &\forall_f^{\mathrm{nc}} \forall_d(f[I] \subseteq I_d \to X(\mathrm{Out}_d \circ f) \to \mathrm{Read}_X f), \qquad (\mathrm{Read}_X)_0^+ \\ &\forall_f^{\mathrm{nc}}(\mathrm{Read}_X(f \circ \mathrm{In}_{-1}) \to \mathrm{Read}_X(f \circ \mathrm{In}_0) \to \mathrm{Read}_X(f \circ \mathrm{In}_1) \to \\ & \mathrm{Read}_X f). \end{split}$$

 $(\operatorname{Read}_X)_1^+$

where $I_d = \left[\frac{d-1}{2}, \frac{d+1}{2}\right] (d \in \{-1, 0, 1\})$ and $(\operatorname{Out}_d \circ f)(x) := 2f(x) - d, \qquad (f \circ \operatorname{In}_d)(x) := f(\frac{x+d}{2}).$

Witnesses for $\operatorname{Read}_X f$: total ideals in

$$\mathbf{R}_{\alpha} := \mu_{\xi}(\mathsf{Put}^{\mathbf{SD} \to \alpha \to \xi}, \mathsf{Get}^{\xi \to \xi \to \xi \to \xi})$$

where **SD** := $\{-1, 0, 1\}$.

Read_X and its witnesses

Inductively define a predicate Read_X of arity (φ) by the clauses

$$\forall_f^{\operatorname{nc}} \forall_d (f[I] \subseteq I_d \to X(\operatorname{Out}_d \circ f) \to \operatorname{Read}_X f), \qquad (\operatorname{Read}_X)_0^+$$

 $\forall_f^{\operatorname{nc}}(\operatorname{Read}_X(f \circ \operatorname{In}_{-1}) \to \operatorname{Read}_X(f \circ \operatorname{In}_0) \to \operatorname{Read}_X(f \circ \operatorname{In}_1) \to$
 $\operatorname{Read}_X f).$

 $(\operatorname{Read}_X)_1^+$

where
$$I_d = \left[\frac{d-1}{2}, \frac{d+1}{2}\right] (d \in \{-1, 0, 1\})$$
 and
 $(\operatorname{Out}_d \circ f)(x) := 2f(x) - d, \qquad (f \circ \operatorname{In}_d)(x) := f(\frac{x+d}{2}).$

Witnesses for $\operatorname{Read}_X f$: total ideals in

$$\mathsf{R}_{lpha} := \mu_{\xi}(\mathsf{Put}^{\mathsf{SD} o lpha o \xi}, \mathsf{Get}^{\xi o \xi o \xi o \xi})$$

where **SD** := $\{-1, 0, 1\}$.

Read_X and its witnesses

Inductively define a predicate Read_X of arity (φ) by the clauses

$$orall_{f}^{\operatorname{nc}} orall_{d}(f[I] \subseteq I_{d} \to X(\operatorname{Out}_{d} \circ f) \to \operatorname{Read}_{X} f), \qquad (\operatorname{Read}_{X})_{0}^{+}$$
 $\forall_{f}^{\operatorname{nc}}(\operatorname{Read}_{X}(f \circ \operatorname{In}_{-1}) \to \operatorname{Read}_{X}(f \circ \operatorname{In}_{0}) \to \operatorname{Read}_{X}(f \circ \operatorname{In}_{1}) \to \operatorname{Read}_{X} f).$

 $(\operatorname{Read}_X)_1^+$

where
$$I_d = \left[\frac{d-1}{2}, \frac{d+1}{2}\right] (d \in \{-1, 0, 1\})$$
 and
 $(\operatorname{Out}_d \circ f)(x) := 2f(x) - d, \qquad (f \circ \operatorname{In}_d)(x) := f(\frac{x+d}{2}).$

Witnesses for $\operatorname{Read}_X f$: total ideals in

$$\mathbf{R}_{lpha} := \mu_{\xi}(\mathsf{Put}^{\mathbf{SD} o lpha o \xi}, \mathsf{Get}^{\xi o \xi o \xi o \xi})$$

where $\textbf{SD} := \{-1, 0, 1\}.$

Write , $\operatorname{^{co}Write}$ and its witnesses

Nested inductive definition of a predicate Write of arity (φ):

Write(Id), $\forall_f^{\mathrm{nc}}(\operatorname{Read}_{\operatorname{Write}} f \to \operatorname{Write} f)$ (Id identity function).

Witnesses for Write f: total ideals in

$$\mathbf{W} := \mu_{\xi}(\mathsf{Stop}^{\xi}, \mathsf{Cont}^{\mathbf{R}_{\xi} \to \xi}).$$

Define ^{co}Write, a companion predicate of Write, by

 $\forall_f^{\rm nc}({}^{\rm co}{\rm Write}\,f\to f={\rm Id}\vee{\rm Read}_{{}^{\rm co}{\rm Write}}f).\qquad ({}^{\rm co}{\rm Write})^-$

Nested inductive definition of a predicate Write of arity (φ): Write(Id), $\forall_f^{\text{nc}}(\text{Read}_{\text{Write}}f \to \text{Write}f)$ (Id identity function). $\mathbf{W} := \mu_{\xi}(\mathsf{Stop}^{\xi}, \mathsf{Cont}^{\mathbf{R}_{\xi} \to \xi}).$

Nested inductive definition of a predicate Write of arity (φ):

Write(Id), $\forall_f^{\text{nc}}(\text{Read}_{\text{Write}}f \to \text{Write}f)$ (Id identity function).

Witnesses for Write f: total ideals in

$$\mathbf{W} := \mu_{\xi}(\mathsf{Stop}^{\xi}, \mathsf{Cont}^{\mathbf{R}_{\xi} \to \xi}).$$

Define ^{co}Write, a companion predicate of Write, by

 $\forall_f^{\rm nc}({}^{\rm co}{\rm Write}\,f\to f={\rm Id}\,\vee\,{\rm Read}_{{}^{\rm co}{\rm Write}}f).\qquad ({}^{\rm co}{\rm Write})^-$

Nested inductive definition of a predicate Write of arity (φ):

Write(Id), $\forall_f^{\rm nc}(\operatorname{Read}_{\operatorname{Write}} f \to \operatorname{Write} f)$ (Id identity function).

Witnesses for Write f: total ideals in

$$\mathbf{W} := \mu_{\xi}(\mathsf{Stop}^{\xi}, \mathsf{Cont}^{\mathbf{R}_{\xi} \to \xi}).$$

Define $^{\rm co}{
m Write}$, a companion predicate of ${
m Write}$, by

$$\forall_f^{\rm nc}({}^{\rm co}{\rm Write}\,f\to f={\rm Id}\vee{\rm Read}_{{}^{\rm co}{\rm Write}}f).\qquad ({}^{\rm co}{\rm Write})^-$$

Nested inductive definition of a predicate Write of arity (φ):

Write(Id), $\forall_f^{\text{nc}}(\text{Read}_{\text{Write}}f \to \text{Write}f)$ (Id identity function).

Witnesses for Write f: total ideals in

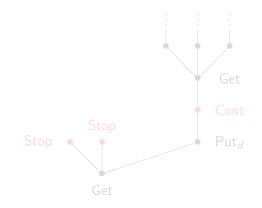
$$\mathbf{W} := \mu_{\xi}(\mathsf{Stop}^{\xi}, \mathsf{Cont}^{\mathbf{R}_{\xi} \to \xi}).$$

Define $^{\rm co}{
m Write}$, a companion predicate of ${
m Write}$, by

$$\forall_f^{\rm nc}({}^{\rm co}{\rm Write}\,f\to f={\rm Id}\vee{\rm Read}_{{}^{\rm co}{\rm Write}}f).\qquad ({}^{\rm co}{\rm Write})^-$$

W-cototal R_W-total ideals

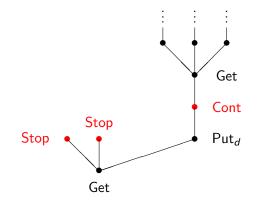
are possibly non well-founded trees t:



- ▶ Get-Put-part: well-founded,
- Stop-Cont-part: not necessarily well-founded.

W-cototal R_W-total ideals

are possibly non well-founded trees *t*:



- Get-Put-part: well-founded,
- Stop-Cont-part: not necessarily well-founded.

View them as read-write machines.

- Start at the root of the tree.
- At node $Put_d t$, output the digit d, carry on with the tree t.
- ► At node Get t₋₁ t₀ t₁, read a digit d from the input stream and continue with the tree t_d.
- At node Stop, return the rest of the input unprocessed as output.
- At node Cont *t*, continue with the tree *t*.

Output might be infinite, but $\mathbf{R}_{\mathbf{W}}$ -totality ensures that the machine can only read finitely many input digits before producing another output digit.

View them as read-write machines.

- Start at the root of the tree.
- At node $Put_d t$, output the digit d, carry on with the tree t.
- ► At node Get t₋₁ t₀ t₁, read a digit d from the input stream and continue with the tree t_d.
- At node Stop, return the rest of the input unprocessed as output.
- At node Cont *t*, continue with the tree *t*.

Output might be infinite, but $\mathbf{R}_{\mathbf{W}}$ -totality ensures that the machine can only read finitely many input digits before producing another output digit.

View them as read-write machines.

- Start at the root of the tree.
- At node $Put_d t$, output the digit d, carry on with the tree t.
- ► At node Get t₋₁ t₀ t₁, read a digit d from the input stream and continue with the tree t_d.
- At node Stop, return the rest of the input unprocessed as output.
- At node Cont *t*, continue with the tree *t*.

Output might be infinite, but $\mathbf{R}_{\mathbf{W}}$ -totality ensures that the machine can only read finitely many input digits before producing another output digit.

View them as read-write machines.

- Start at the root of the tree.
- At node $Put_d t$, output the digit d, carry on with the tree t.
- ► At node Get t₋₁ t₀ t₁, read a digit d from the input stream and continue with the tree t_d.
- At node Stop, return the rest of the input unprocessed as output.
- At node Cont *t*, continue with the tree *t*.

Output might be infinite, but $\mathbf{R}_{\mathbf{W}}$ -totality ensures that the machine can only read finitely many input digits before producing another output digit.

View them as read-write machines.

- Start at the root of the tree.
- At node $Put_d t$, output the digit d, carry on with the tree t.
- ► At node Get t₋₁ t₀ t₁, read a digit d from the input stream and continue with the tree t_d.
- At node Stop, return the rest of the input unprocessed as output.
- At node Cont *t*, continue with the tree *t*.

Output might be infinite, but $\mathbf{R}_{\mathbf{W}}$ -totality ensures that the machine can only read finitely many input digits before producing another output digit.

View them as read-write machines.

- Start at the root of the tree.
- At node $Put_d t$, output the digit d, carry on with the tree t.
- ► At node Get t₋₁ t₀ t₁, read a digit d from the input stream and continue with the tree t_d.
- At node Stop, return the rest of the input unprocessed as output.
- At node Cont *t*, continue with the tree *t*.

Output might be infinite, but $\mathbf{R}_{\mathbf{W}}$ -totality ensures that the machine can only read finitely many input digits before producing another output digit.

View them as read-write machines.

- Start at the root of the tree.
- At node $Put_d t$, output the digit d, carry on with the tree t.
- ► At node Get t₋₁ t₀ t₁, read a digit d from the input stream and continue with the tree t_d.
- At node Stop, return the rest of the input unprocessed as output.
- At node Cont *t*, continue with the tree *t*.

Output might be infinite, but $\mathbf{R}_{\mathbf{W}}$ -totality ensures that the machine can only read finitely many input digits before producing another output digit.

View them as read-write machines.

- Start at the root of the tree.
- At node $Put_d t$, output the digit d, carry on with the tree t.
- At node Get t₋₁ t₀ t₁, read a digit d from the input stream and continue with the tree t_d.
- At node Stop, return the rest of the input unprocessed as output.
- At node Cont *t*, continue with the tree *t*.

Output might be infinite, but ${\bf R}_{{\bf W}}\mbox{-}totality ensures that the machine can only read finitely many input digits before producing another output digit.$

View them as read-write machines.

- Start at the root of the tree.
- At node $Put_d t$, output the digit d, carry on with the tree t.
- ► At node Get t₋₁ t₀ t₁, read a digit d from the input stream and continue with the tree t_d.
- At node Stop, return the rest of the input unprocessed as output.
- At node Cont *t*, continue with the tree *t*.

Output might be infinite, but ${\bf R}_{{\bf W}}\mbox{-}totality ensures that the machine can only read finitely many input digits before producing another output digit.$

The greatest-fixed-point axiom $(^{co}Write)^+$ (coinduction) is

 $\forall_f^{\mathrm{nc}}(Qf \to \forall_f^{\mathrm{nc}}(Qf \to f = \mathrm{Id} \lor \mathrm{Read_{^{\mathrm{co}}\mathrm{Write}}}_Qf) \to {^{\mathrm{co}}\mathrm{Write}} f).$

Theorem [Type-1 u.c.f. into type-0 u.c.f.]. $\forall_f^{nc}(Cf \to {}^{co}Write f)$.

Proof. Assume Cf. Use (^{co}Write)⁺ with competitor C. Suffices $\forall_f^{nc}(Cf \to f = \text{Id} \lor \text{Read}_{^{oo}\text{Write}\lor C}f)$. Assume Cf, in particular $B_{m,2}f := \forall_a \exists_b (f[I_{a,m}] \subseteq I_{b,2})$ for some *m*. Get rhs by Lemma 1.

Lemma 1. $\forall_m \forall_f^{\mathrm{nc}}(\mathbf{B}_{m,2}f \to \mathbf{C}f \to \mathrm{Read}_{{}^{\mathrm{co}}\mathrm{Write}\vee\mathbf{C}}f).$

Proof. Induction on m, using Lemma 2 in the base case.

Lemma 2 [FindSD]. $\forall_f^{\mathrm{nc}}(\mathrm{B}_{0,2}f \to \exists_d(f[I] \subseteq I_d)).$

The greatest-fixed-point axiom ($^{co}Write$)⁺ (coinduction) is

 $\forall_f^{\mathrm{nc}}(Q f \to \forall_f^{\mathrm{nc}}(Q f \to f = \mathrm{Id} \lor \mathrm{Read_{^{\mathrm{co}}\mathrm{Write}}}_Q f) \to {^{\mathrm{co}}\mathrm{Write}} f).$

Theorem [Type-1 u.c.f. into type-0 u.c.f.]. $\forall_f^{nc}(Cf \rightarrow {}^{co}Write f)$.

Proof. Assume Cf. Use (^{co}Write)⁺ with competitor C. Suffices $\forall_f^{nc}(Cf \to f = \text{Id} \lor \text{Read}_{\circ\circ\text{Write}\lor C}f)$. Assume Cf, in particular $B_{m,2}f := \forall_a \exists_b (f[I_{a,m}] \subseteq I_{b,2})$ for some *m*. Get rhs by Lemma 1.

Lemma 1. $\forall_m \forall_f^{\mathrm{nc}}(\mathbf{B}_{m,2}f \to \mathbf{C}f \to \mathrm{Read}_{{}^{\mathrm{co}}\mathrm{Write}\vee\mathbf{C}}f).$

Proof. Induction on m, using Lemma 2 in the base case.

Lemma 2 [FindSD]. $\forall_f^{\mathrm{nc}}(\mathrm{B}_{0,2}f \to \exists_d(f[I] \subseteq I_d)).$

The greatest-fixed-point axiom ($^{co}Write$)⁺ (coinduction) is

 $\forall_f^{\mathrm{nc}}(Q f \to \forall_f^{\mathrm{nc}}(Q f \to f = \mathrm{Id} \lor \mathrm{Read_{^{\mathrm{co}}\mathrm{Write}}}_Q f) \to {^{\mathrm{co}}\mathrm{Write}} f).$

Theorem [Type-1 u.c.f. into type-0 u.c.f.]. $\forall_f^{nc}(Cf \rightarrow {}^{co}Write f)$.

Proof. Assume Cf. Use (^{co}Write)⁺ with competitor C. Suffices $\forall_f^{nc}(Cf \rightarrow f = \text{Id} \lor \text{Read}_{co}\text{Write} \lor Cf)$. Assume Cf, in particular $B_{m,2}f := \forall_a \exists_b (f[I_{a,m}] \subseteq I_{b,2})$ for some m. Get rhs by Lemma 1.

Lemma 1. $\forall_m \forall_f^{\mathrm{nc}}(\mathbf{B}_{m,2}f \to \mathbf{C}f \to \mathrm{Read}_{{}^{\mathrm{co}}\mathrm{Write}\vee\mathbf{C}}f).$

Proof. Induction on m, using Lemma 2 in the base case.

Lemma 2 [FindSD]. $\forall_f^{\mathrm{nc}}(\mathrm{B}_{0,2}f \to \exists_d(f[I] \subseteq I_d)).$

The greatest-fixed-point axiom ($^{co}Write$)⁺ (coinduction) is

 $\forall_f^{\mathrm{nc}}(Q f \to \forall_f^{\mathrm{nc}}(Q f \to f = \mathrm{Id} \lor \mathrm{Read_{^{\mathrm{co}}\mathrm{Write}}}_Q f) \to {^{\mathrm{co}}\mathrm{Write}} f).$

Theorem [Type-1 u.c.f. into type-0 u.c.f.]. $\forall_f^{\text{nc}}(Cf \to {}^{\text{co}}\text{Write } f)$.

Proof. Assume Cf. Use (^{co}Write)⁺ with competitor C. Suffices $\forall_f^{nc}(Cf \to f = \text{Id} \lor \text{Read}_{co}\text{Write}\lor Cf)$. Assume Cf, in particular $B_{m,2}f := \forall_a \exists_b (f[I_{a,m}] \subseteq I_{b,2})$ for some *m*. Get rhs by Lemma 1.

Lemma 1. $\forall_m \forall_f^{\mathrm{nc}}(\mathbf{B}_{m,2}f \to \mathbf{C}f \to \mathrm{Read_{^{\mathrm{co}}}Write}_{\vee \mathbf{C}}f).$

Proof. Induction on m, using Lemma 2 in the base case.

Lemma 2 [FindSD]. $\forall_f^{\mathrm{nc}}(\mathrm{B}_{0,2}f \to \exists_d(f[I] \subseteq I_d)).$

The greatest-fixed-point axiom ($^{co}Write$)⁺ (coinduction) is

 $\forall_f^{\mathrm{nc}}(Q f \to \forall_f^{\mathrm{nc}}(Q f \to f = \mathrm{Id} \lor \mathrm{Read_{^{\mathrm{co}}\mathrm{Write}}}_Q f) \to {^{\mathrm{co}}\mathrm{Write}} f).$

Theorem [Type-1 u.c.f. into type-0 u.c.f.]. $\forall_f^{\text{nc}}(Cf \to {}^{\text{co}}\text{Write } f)$.

Proof. Assume Cf. Use (^{co}Write)⁺ with competitor C. Suffices $\forall_f^{nc}(Cf \to f = \text{Id} \lor \text{Read}_{co}\text{Write}\lor Cf)$. Assume Cf, in particular $B_{m,2}f := \forall_a \exists_b (f[I_{a,m}] \subseteq I_{b,2})$ for some *m*. Get rhs by Lemma 1.

Lemma 1. $\forall_m \forall_f^{\mathrm{nc}}(\mathbf{B}_{m,2}f \to \mathbf{C}f \to \mathrm{Read_{co}}_{\mathrm{Write} \lor \mathbf{C}}f).$

Proof. Induction on *m*, using Lemma 2 in the base case.

Lemma 2 [FindSD]. $\forall_f^{\mathrm{nc}}(\mathrm{B}_{0,2}f \to \exists_d(f[I] \subseteq I_d)).$

The greatest-fixed-point axiom ($^{co}Write$)⁺ (coinduction) is

 $\forall_f^{\mathrm{nc}}(Q f \to \forall_f^{\mathrm{nc}}(Q f \to f = \mathrm{Id} \lor \mathrm{Read_{^{\mathrm{co}}\mathrm{Write}}}_Q f) \to {^{\mathrm{co}}\mathrm{Write}} f).$

Theorem [Type-1 u.c.f. into type-0 u.c.f.]. $\forall_f^{\text{nc}}(Cf \to {}^{\text{co}}\text{Write } f)$.

Proof. Assume Cf. Use (^{co}Write)⁺ with competitor C. Suffices $\forall_f^{nc}(Cf \to f = \text{Id} \lor \text{Read}_{co}\text{Write}\lor Cf)$. Assume Cf, in particular $B_{m,2}f := \forall_a \exists_b (f[I_{a,m}] \subseteq I_{b,2})$ for some *m*. Get rhs by Lemma 1.

Lemma 1. $\forall_m \forall_f^{\mathrm{nc}}(\mathbf{B}_{m,2}f \to \mathbf{C}f \to \mathrm{Read_{co}}_{\mathrm{Write} \lor \mathbf{C}}f).$

Proof. Induction on *m*, using Lemma 2 in the base case.

Lemma 2 [FindSD]. $\forall_f^{\mathrm{nc}}(\mathrm{B}_{0,2}f \to \exists_d(f[I] \subseteq I_d)).$

```
[oh](CoRec (nat=>nat@@(rat=>rat))=>algwrite)oh
([oh0]Inr((Rec nat=>..[type]..)
      left(oh0(Succ(Succ Zero)))
       ([g,oh1] [let sd (cFindSd(g 0))
           (Put sd
           (InR([n]left(oh1(Succ n))@
                ([a]2*right(oh1(Succ n))a-SDToInt sd))))])
       ([n,st,g,oh1]
        Get
         (st([a]g((a+IntN 1)/2))
          ([n0]left(oh1 n0)@
           ([a]right(oh1 n0)((a+IntN 1)/2))))
         (st([a]g(a/2))([n0]left(oh1 n0)@
                        ([a]right(oh1 n0)(a/2))))
         (st([a]g((a+1)/2))([n0]left(oh1 n0)@
                            ([a]right(oh1 n0)((a+1)/2)))))
      right(oh0(Succ(Succ Zero)))
      oh0))
```

The corecursion operator ${}^{\mathrm{co}}\mathcal{R}^{ au}_{\mathbf{W}}$ has type

$$au
ightarrow (au
ightarrow \mathbf{U} + \mathbf{R}_{\mathbf{W}+ au})
ightarrow \mathbf{W}.$$

Conversion rule

 ${}^{\mathrm{co}}\mathcal{R}^{\tau}_{\mathsf{W}}\mathsf{N}\mathsf{M} \mapsto [\mathsf{case}\;(\mathsf{M}\mathsf{N})^{\mathsf{U}+\mathsf{R}(\mathsf{W}+\tau)}\;\mathsf{of} \\ \mathrm{Inl}_{-} \mapsto \mathrm{Stop}\;| \\ \mathrm{Inr}\;x \mapsto \mathrm{Cont}(\mathcal{M}^{\mathsf{W}}_{\mathsf{R}(\mathsf{W}+\tau)}(\lambda_{p}[\mathsf{case}\;p^{\mathsf{W}+\tau}\;\mathsf{of} \\ \mathrm{Inl}\;y^{\mathsf{W}}\mapsto y\;| \\ \mathrm{Inr}\;z^{\tau}\mapsto {}^{\mathrm{co}}\mathcal{R}^{\tau}_{\mathsf{W}}z\mathsf{M}]) \\ \times^{\mathsf{R}(\mathsf{W}+\tau)}]$

- Here τ is N → N × (Q → Q), for pairs of ω: N → N and h: N → Q → Q (variable name oh).
- ▶ No termination; translate into Haskell for evaluation.

The corecursion operator ${}^{\mathrm{co}}\mathcal{R}^{\tau}_{\mathbf{W}}$ has type

$$au
ightarrow (au
ightarrow \mathbf{U} + \mathbf{R}_{\mathbf{W} + au})
ightarrow \mathbf{W}.$$

Conversion rule

 ${}^{\operatorname{co}}\mathcal{R}^{\tau}_{\mathsf{W}}\mathsf{N}\mathsf{M} \mapsto [\mathsf{case}\;(\mathsf{M}\mathsf{N})^{\mathsf{U}+\mathsf{R}(\mathsf{W}+\tau)}\;\mathsf{of} \\ \operatorname{Inl}_{-} \mapsto \operatorname{Stop} | \\ \operatorname{Inr} x \mapsto \operatorname{Cont}(\mathcal{M}^{\mathsf{W}}_{\mathsf{R}(\mathsf{W}+\tau)}(\lambda_{\mathsf{P}}[\mathsf{case}\;\rho^{\mathsf{W}+\tau}\;\mathsf{of} \\ \operatorname{Inl}\;y^{\mathsf{W}} \mapsto y \mid \\ \operatorname{Inr}\;z^{\tau} \mapsto {}^{\operatorname{co}}\mathcal{R}^{\tau}_{\mathsf{W}}z\mathsf{M}]) \\ \times^{\mathsf{R}(\mathsf{W}+\tau)}]$

- Here τ is $\mathbf{N} \to \mathbf{N} \times (\mathbf{Q} \to \mathbf{Q})$, for pairs of $\omega \colon \mathbf{N} \to \mathbf{N}$ and $h \colon \mathbf{N} \to \mathbf{Q} \to \mathbf{Q}$ (variable name oh).
- ▶ No termination; translate into Haskell for evaluation.

The corecursion operator ${}^{\mathrm{co}}\mathcal{R}^{\tau}_{\mathbf{W}}$ has type

$$au
ightarrow (au
ightarrow \mathbf{U} + \mathbf{R}_{\mathbf{W} + au})
ightarrow \mathbf{W}.$$

Conversion rule

$$c^{co} \mathcal{R}^{\tau}_{\mathbf{W}} NM \mapsto [\mathbf{case} \ (MN)^{\mathbf{U} + \mathbf{R}(\mathbf{W} + \tau)} \mathbf{ of} \\ Inl_{-} \mapsto \mathsf{Stop} \mid \\ Inr \ x \mapsto \mathsf{Cont}(\mathcal{M}^{\mathbf{W}}_{\mathbf{R}(\mathbf{W} + \tau)}(\lambda_{p}[\mathbf{case} \ p^{\mathbf{W} + \tau} \mathbf{ of} \\ Inl \ y^{\mathbf{W}} \mapsto y \mid \\ Inr \ z^{\tau} \mapsto {}^{co} \mathcal{R}^{\tau}_{\mathbf{W}} zM]) \\ x^{\mathbf{R}(\mathbf{W} + \tau)}]$$

- Here τ is N → N × (Q → Q), for pairs of ω: N → N and h: N → Q → Q (variable name oh).
- No termination; translate into Haskell for evaluation.

The corecursion operator ${}^{\mathrm{co}}\mathcal{R}^{\tau}_{\mathbf{W}}$ has type

$$au
ightarrow (au
ightarrow \mathbf{U} + \mathbf{R}_{\mathbf{W} + au})
ightarrow \mathbf{W}.$$

Conversion rule

$$c^{co} \mathcal{R}^{\tau}_{\mathbf{W}} NM \mapsto [\mathbf{case} \ (MN)^{\mathbf{U} + \mathbf{R}(\mathbf{W} + \tau)} \mathbf{ of} \\ Inl_{-} \mapsto \mathsf{Stop} \mid \\ Inr \ x \mapsto \mathsf{Cont}(\mathcal{M}^{\mathbf{W}}_{\mathbf{R}(\mathbf{W} + \tau)}(\lambda_{p}[\mathbf{case} \ p^{\mathbf{W} + \tau} \mathbf{ of} \\ Inl \ y^{\mathbf{W}} \mapsto y \mid \\ Inr \ z^{\tau} \mapsto {}^{co} \mathcal{R}^{\tau}_{\mathbf{W}} zM]) \\ x^{\mathbf{R}(\mathbf{W} + \tau)}]$$

with \mathcal{M} a "map"-operator.

Here τ is N → N × (Q → Q), for pairs of ω: N → N and h: N → Q → Q (variable name oh).

No termination; translate into Haskell for evaluation.

The corecursion operator ${}^{\mathrm{co}}\mathcal{R}^{\tau}_{\mathbf{W}}$ has type

$$au
ightarrow (au
ightarrow \mathbf{U} + \mathbf{R}_{\mathbf{W} + au})
ightarrow \mathbf{W}.$$

Conversion rule

$$c^{co} \mathcal{R}^{\tau}_{\mathbf{W}} NM \mapsto [\mathbf{case} \ (MN)^{\mathbf{U} + \mathbf{R}(\mathbf{W} + \tau)} \mathbf{ of} \\ Inl_{-} \mapsto \mathsf{Stop} \mid \\ Inr \ x \mapsto \mathsf{Cont}(\mathcal{M}^{\mathbf{W}}_{\mathbf{R}(\mathbf{W} + \tau)}(\lambda_{p}[\mathbf{case} \ p^{\mathbf{W} + \tau} \mathbf{ of} \\ Inl \ y^{\mathbf{W}} \mapsto y \mid \\ Inr \ z^{\tau} \mapsto {}^{co} \mathcal{R}^{\tau}_{\mathbf{W}} zM]) \\ x^{\mathbf{R}(\mathbf{W} + \tau)}]$$

- Here τ is N → N × (Q → Q), for pairs of ω: N → N and h: N → Q → Q (variable name oh).
- ▶ No termination; translate into Haskell for evaluation.

Conclusion

 ${\rm TCF}$ (theory of computable functionals) as a possible foundation for exact real arithmetic.

- ➤ Simply typed theory, with "lazy" free algebras as base types (⇒ constructors are injective and have disjoint ranges).
- Variables range over partial continuous functionals.
- ► Constants denote computable functionals (:= r.e. ideals).
- ▶ Minimal logic (\rightarrow , \forall), plus inductive & coinductive definitions.
- Computational content in abstract theories.
- Decorations $(\rightarrow, \forall \text{ and } \rightarrow^{nc}, \forall^{nc})$ for fine-tuning.

References

- U. Berger, From coinductive proofs to exact real arithmetic. CSL 2009.
- K. Miyamoto and H.S., Program extraction in exact real arithmetic. To appear, MSCS.
- K. Miyamoto, F. Nordvall Forsberg and H.S., Program extraction from nested definitions. ITP 2013.
- H.S. and S.S. Wainer, Proofs and Computations. Perspectives in Logic, ASL & Cambridge UP, 2012.