Computational content of proofs involving
coinduction

Helmut Schwichtenberg
(j-w.w. Kenji Miyamoto and Fredrik Nordvall Forsberg)

Mathematisches Institut, LMU, Minchen

Advances in Proof Theory, Universitat Bern,
13.-14. Dezember 2013

1/26

Computable functionals

2/26

Computable functionals

Arguments of any finite type, not only numbers and functions.

2/26

Computable functionals

Arguments of any finite type, not only numbers and functions.

» Principle of finite support. If H(®) is defined with value n,
then there is a finite approximation ®¢ of ® such that H(®g)
is defined with value n.

2/26

Computable functionals

Arguments of any finite type, not only numbers and functions.

» Principle of finite support. If H(®) is defined with value n,
then there is a finite approximation ®¢ of ® such that H(®g)
is defined with value n.

» Monotonicity principle. If H(®) is defined with value n and ¢’
extends ®, then also H(®') is defined with value n.

2/26

Computable functionals

Arguments of any finite type, not only numbers and functions.

» Principle of finite support. If H(®) is defined with value n,
then there is a finite approximation ®¢ of ® such that H(®g)
is defined with value n.

» Monotonicity principle. If H(®) is defined with value n and ¢’
extends ®, then also H(®') is defined with value n.

» Effectivity principle. An object is computable iff its set of
finite approximations is (primitive) recursively enumerable (or
equivalently, ¥9-definable).

2/26

Tokens, consistency and entailment at base types

3/26

Tokens, consistency and entailment at base types
Types
» Base types ¢: free algebras, given by constructors (e.g. 0, S).
> Function types: p — 0.

3/26

Tokens, consistency and entailment at base types
Types

» Base types ¢: free algebras, given by constructors (e.g. 0, S).

> Function types: p — 0.

Example: ¢ := D (derivations, or binary trees), by constructors o
(leaf, or nil) and C: D — D — D (branch, or cons).

3/26

Tokens, consistency and entailment at base types
Types
» Base types ¢: free algebras, given by constructors (e.g. 0, S).
> Function types: p — 0.

Example: ¢ := D (derivations, or binary trees), by constructors o
(leaf, or nil) and C: D — D — D (branch, or cons).
» Token aP: o, Cxo, Cox, C(Cxo)o.

3/26

Tokens, consistency and entailment at base types

Types

» Base types ¢: free algebras, given by constructors (e.g. 0, S).

> Function types: p — 0.
Example: ¢ := D (derivations, or binary trees), by constructors o
(leaf, or nil) and C: D — D — D (branch, or cons).

» Token aP: o, Cxo, Cox, C(Cxo)o.

» UP:={ay,...,a,} consistent if

» all a; start with the same constructor,

» (proper) tokens at j-th argument positions are consistent
(example: {Cxo, Cox}).

3/26

Tokens, consistency and entailment at base types
Types

» Base types ¢: free algebras, given by constructors (e.g. 0, S).
> Function types: p — 0.

Example: ¢ := D (derivations, or binary trees), by constructors o
(leaf, or nil) and C: D — D — D (branch, or cons).
» Token aP: o, Cxo, Cox, C(Cxo)o.

» UP:={ay,...,a,} consistent if

» all a; start with the same constructor,

» (proper) tokens at j-th argument positions are consistent
(example: {Cxo, Cox}).

» UP I a (entails) if
» all a; € U and a start with the same constructor,

» (proper) tokens at j-th argument positions of a; entail j-th
argument of a (example: {Cxo, Cox} I Coo).

3/26

Tokens, consistency and entailment at base types
Types

» Base types ¢: free algebras, given by constructors (e.g. 0, S)
> Function types: p — 0.

Example: ¢ := D (derivations, or binary trees), by constructors o
(leaf, or nil) and C: D — D — D (branch, or cons).
» Token aP: o, Cxo, Cox, C(Cxo)o.

» UP:={ay,...,a,} consistent if

» all a; start with the same constructor,

» (proper) tokens at j-th argument positions are consistent
(example: {Cxo, Cox}).

» UP I a (entails) if
» all a; € U and a start with the same constructor,

» (proper) tokens at j-th argument positions of a; entail j-th
argument of a (example: {Cxo, Cox} I Coo).

An ideal x” is a (possibly infinite) set of tokens which is
> consistent and

» closed under entailment.

3/26

Tokens and entailment for N

S(S(S0))
S(S0) S(S(S%))

S0

0 e S

{a} F b iff there is a path from a (up) to b (down).

4/26

Total and cototal ideals of base type

5/26

Total and cototal ideals of base type

An ideal x* is cototal if every constructor tree P(x) € x has a
“-1-predecessor” P(C¥) € x; it is total if it is cototal and the
relation =1 on x is well-founded.

5/26

Total and cototal ideals of base type

An ideal x* is cototal if every constructor tree P(x) € x has a
“-1-predecessor” P(C¥) € x; it is total if it is cototal and the
relation =1 on x is well-founded.

Examples. N:

» Every total ideal is the deductive closure of a token
S(S...(S0)...). The set of all tokens S(S...(S%)...)is a
cototal ideal.

5/26

Total and cototal ideals of base type

An ideal x* is cototal if every constructor tree P(x) € x has a
“-1-predecessor” P(C¥) € x; it is total if it is cototal and the
relation =1 on x is well-founded.

Examples. N:

» Every total ideal is the deductive closure of a token

S(S...(S0)...). The set of all tokens S(S...(S%)...)isa
cototal ideal.

D (derivations):
» Total ideal ~ finite derivation.

» Cototal ideal ~ finite or infinite “locally correct” derivation
[Mints 78].

> Arbitrary ideal ~ incomplete derivation, with “holes”.

5/26

Tokens, consistency and entailment at function types

6/26

Tokens, consistency and entailment at function types

Ideals: partial continuous functionals f#7% (Scott, Ershov).

6/26

Tokens, consistency and entailment at function types

Ideals: partial continuous functionals f#7% (Scott, Ershov).

» Tokens of type p — o are pairs (U, a) with U € Con,.

6/26

Tokens, consistency and entailment at function types

Ideals: partial continuous functionals 777 (Scott, Ershov).
» Tokens of type p — o are pairs (U, a) with U € Con,.
» {(Ui,aj) | iel} e Conyss means

Vyci(Ujey U € Con, — {aj | j € J} € Con,).

“Formal neighborhood".

6/26

Tokens, consistency and entailment at function types

Ideals: partial continuous functionals 777 (Scott, Ershov).
» Tokens of type p — o are pairs (U, a) with U € Con,.
» {(Ui,aj) | iel} e Conyss means

Vici(Ujey Uj € Con, — {aj | j € J} € Cony).

“Formal neighborhood".

» Wk, s (U,a) means WU +, a, where application WU of
W:{(U,-,a,-) ‘ iel}to Uis{a,- | Ul—p U,}

6/26

Tokens, consistency and entailment at function types

Ideals: partial continuous functionals 777 (Scott, Ershov).
» Tokens of type p — o are pairs (U, a) with U € Con,.
» {(Ui,aj) | iel} e Conyss means

Vyci(Ujey U € Con, — {aj | j € J} € Con,).

“Formal neighborhood".

» Wk, s (U,a) means WU +, a, where application WU of
W:{(U,-,a,-) ‘ iel}to Uis{a,- | Ul—p U,}
Application of f777 to x” is

f(x):={a% | Jucx(U,a) € f }.

6/26

Tokens, consistency and entailment at function types

Ideals: partial continuous functionals f#7% (Scott, Ershov).
» Tokens of type p — o are pairs (U, a) with U € Con,.

» {(Ui,aj) | iel} e Conyss means
Vyci(Ujey Uj € Cony, — {a; | j € J} € Cony).

“Formal neighborhood".

» Wk, s (U,a) means WU +, a, where application WU of
W:{(U,-,a,-) ‘ i € /}tO Uis{a,- | Ul—p U,}
Application of f777 to x” is

f(x):={a% | Jucx(U,a) € f }.

Principles of finite support and monotonicity hold.

6/26

Computable functionals

7/26

Computable functionals

A partial continuous functional f* is computable if it is a
(primitive) recursively enumerable set of tokens.

7/26

Computable functionals

A partial continuous functional f* is computable if it is a
(primitive) recursively enumerable set of tokens.

How to define computable functionals?

7/26

Computable functionals

A partial continuous functional f* is computable if it is a
(primitive) recursively enumerable set of tokens.

How to define computable functionals? By computation rules
DF’,(}Z):M, (i:]-’-'-’n)

with free variables of P;(y;) and M; among ¥;, where P;(y;) are
“constructor patterns”.

7/26

Computable functionals

A partial continuous functional f* is computable if it is a
(primitive) recursively enumerable set of tokens.

How to define computable functionals? By computation rules
DF’,(}Z):M, (i:]-’-'-’n)

with free variables of P;(y;) and M; among ¥;, where P;(y;) are
“constructor patterns”.

Terms (a common extension of Godel's T and Plotkin's PCF)

M, N == xP | CP | D? | (Ao M)P7 | (MP7 NP

7/26

Examples

+: N — N — N defined by

n+0=n,
n+Sm = S(n+ m).

8/26

Examples

+: N — N — N defined by

n+0=n,

n+Sm = S(n+ m).

Y: (1t — 7) — 7 defined by

Yf = £(YF).

8/26

Examples

+: N — N — N defined by

n+0=n,
n+Sm = S(n+ m).

Y: (1t — 7) — 7 defined by
Yf = f(YF).
Ry:N—=7—= (N —7—7)— 7 defined by

RNOXF = x,

Rn(Sn)xf = fx(Rynxf).

8/26

Examples

+: N — N — N defined by

n+0=n,
n+Sm = S(n+ m).

Y: (1t — 7) — 7 defined by
Yf = f(YF).
Ry:N—=7—= (N —7—7)— 7 defined by

RNOXF = x,
Rn(Sn)xf = fx(Rynxf).

Reduction (including 3, n) is non-terminating, but confluent.

8/26

Denotational semantics

9/26

Denotational semantics
How to use computation rules to define a computable functional?

9/26

Denotational semantics

How to use computition rules to define a computable functional?
Inductively define (U, a) € [AxM] (FV(M) C {xX}).

9/26

Denotational semantics
How to use computation rules to define a computable functional?
Inductively define (U, a) € [AsM] (FV(M) C {%}).
Case Az, zM with X free in M, but not y.

(U, VT/, a) S II/\Y,EM]]
: (K).
Vv, W

(U7 73) € H:AY,y,ZM]]

9/26

Denotational semantics

How to use computation rules to define a computable functional?
Inductively define (U, a) € [AxM] (FV(M) C {X}).
Case Az, zM with X free in M, but not y.

(Ua VT/7 a) < IIAS(‘,Z’M]]

= 5 (K).
(U7 vV, W, a) S |I/\>_<’,y,fM]]
Case AzM with X the free variables in M.
Uka (U,V,a) € PxM] (U, V) C [AxM]

W epoa Ooa)ebeyy

9/26

Denotational semantics

How to use computation rules to define a computable functional?
Inductively define (U, a) € [AxM] (FV(M) C {X}).
Case Az, zM with X free in M, but not y.

(Ua VT/7 a) < IIAS(‘,Z’M]]
(U7 V7 VT/v a) € H:AY,y,ZM]]

(K).

Case AzM with X the free variables in M.

Uka . (0.V,3) €Ml (U.V) C AN

——(V), = A).
(U,a) € [[AXX]]() (U,a) € [Ax(MN)] .
For every constructor C and defined constant D:
Ut & V,a) € [A\xM] UF P(V
(©. el _UEPY))

(U,Ca*) € [C] (U,a) € [D]

with one rule (D) for every defining equation DP(X) = M.

9/26

Properties of the denotational semantics

10 /26

Properties of the denotational semantics

» The value is preserved under standard 3, n-conversion and the
computation rules.

10 /26

Properties of the denotational semantics

» The value is preserved under standard 3, n-conversion and the
computation rules.

> An adequacy theorem holds: whenever a closed term M* has a
proper token in its denotation [M], then M (head) reduces to
a constructor term entailing this token.

10 /26

A theory of computable functionals (TCF)

11/26

A theory of computable functionals (TCF)

A variant of HAY.

11/26

A theory of computable functionals (TCF)

A variant of HAY.

Formulas A and predicates P are defined simultaneously

A, B = PF|A— B| VA
Pu=X|{xX|A}|I (I inductively defined).

11/26

A theory of computable functionals (TCF)

A variant of HAY.

Formulas A and predicates P are defined simultaneously

A B:=Pr|A— B|VA
Pu=X|{xX|A}|I (I inductively defined).
VxA not allowed, since this would be impredicative: in the

predicate existence axiom P := {X| A} the formula A could
contain quantifiers with the newly created P in its range.

11/26

A theory of computable functionals (TCF)

A variant of HA“.
Formulas A and predicates P are defined simultaneously

A, B = PF|A— B| VA
Pu=X|{xX|A}|I (I inductively defined).

VxA not allowed, since this would be impredicative: in the
predicate existence axiom P := {X| A} the formula A could
contain quantifiers with the newly created P in its range.

Vxr A is unproblematic: no such existence axioms.

11/26

Brouwer - Heyting - Kolmogorov

12 /26

Brouwer - Heyting - Kolmogorov

Have —+, V=, [+,

12 /26

Brouwer - Heyting - Kolmogorov

Have —=, V*, |+, BHK-interpretation:

» p proves A — B iff p is a construction transforming any proof
q of A into a proof p(q) of B.

12 /26

Brouwer - Heyting - Kolmogorov

Have —=, V*, |+, BHK-interpretation:

» p proves A — B iff p is a construction transforming any proof
q of A into a proof p(q) of B.

» p proves V,» A(x) iff p is a construction such that for all a?,
p(a) proves A(a).

12 /26

Brouwer - Heyting - Kolmogorov

Have —=, V*, |+, BHK-interpretation:

» p proves A — B iff p is a construction transforming any proof
q of A into a proof p(q) of B.

» p proves V,» A(x) iff p is a construction such that for all a?,
p(a) proves A(a).
Leaves open:
» What is a “construction”?

» What is a proof of a prime formula?

12 /26

Brouwer - Heyting - Kolmogorov

Have —=, V*, |+, BHK-interpretation:

» p proves A — B iff p is a construction transforming any proof
q of A into a proof p(q) of B.

» p proves V,» A(x) iff p is a construction such that for all a?,
p(a) proves A(a).
Leaves open:
» What is a “construction”?
» What is a proof of a prime formula?
Proposal:
» Construction: computable functional.

» Proof of a prime formula /7: generation tree.

12 /26

Brouwer - Heyting - Kolmogorov

Have —=, V*, |+, BHK-interpretation:

» p proves A — B iff p is a construction transforming any proof
q of A into a proof p(q) of B.

» p proves V,» A(x) iff p is a construction such that for all a?,
p(a) proves A(a).
Leaves open:
» What is a “construction”?
» What is a proof of a prime formula?
Proposal:
» Construction: computable functional.
» Proof of a prime formula /7: generation tree.

Example: generation tree for Even(6) should consist of a single
branch with nodes Even(0), Even(2), Even(4) and Even(6).

12 /26

The type 7(A) of a formula A

13 /26

The type 7(A) of a formula A

Distinguish non-computational (n.c.) (or Harrop) and
computationally relevant (c.r.) formulas.

13 /26

The type 7(A) of a formula A

Distinguish non-computational (n.c.) (or Harrop) and
computationally relevant (c.r.) formulas. Example:

» r=sisn.c.

» Even(n) is c.r.

13 /26

The type 7(A) of a formula A

Distinguish non-computational (n.c.) (or Harrop) and
computationally relevant (c.r.) formulas. Example:

» r=sisn.c.
» Even(n) is c.r.

Extend the use of p — o to the “nulltype symbol” o:

(p—>0)i=0, (0—=0)=0, (0c—0):=o.

13 /26

The type 7(A) of a formula A

Distinguish non-computational (n.c.) (or Harrop) and
computationally relevant (c.r.) formulas. Example:

» r=sisn.c.
» Even(n) is c.r.

Extend the use of p — o to the “nulltype symbol” o:

(p—>0)i=0, (0—=0)=0, (0c—0):=o.

Define the type 7(A) of a formula A by

(IF) = {L/ if 'isc.r.,

o iflisn.c.,
7(A— B) :==1(A) — 7(B),
T(VxeA) := p — 7(A)

with ¢; associated naturally with /.

13 /26

Realizability

14 /26

Realizability

Introduce a special nullterm symbol € to be used as a “realizer” for
n.c. formulas.

14 /26

Realizability

Introduce a special nullterm symbol € to be used as a “realizer” for
n.c. formulas. Extend term application to € by

et:=¢, te:=t, ecgc:=e¢.

14 /26

Realizability

Introduce a special nullterm symbol € to be used as a “realizer” for
n.c. formulas. Extend term application to € by

et:=¢, te:=t, ecgc:=e¢.

Definition (t r A, t realizes A)

Let A be a formula and t either a term of type 7(A) if the latter is
a type, or the nullterm symbol ¢ for n.c. A.

14 /26

Realizability

Introduce a special nullterm symbol € to be used as a “realizer” for
n.c. formulas. Extend term application to € by

Definition (t r A, t realizes A)

Let A be a formula and t either a term of type 7(A) if the latter is
a type, or the nullterm symbol ¢ for n.c. A.

‘eIz I"ts if I'is c.r. (/" inductively defined),
rls:=
Is if lisn.c.,

tr(A— B) =Vx(xrA — txrB),
tr Vi A =V (txr A).

14 /26

Extracted terms, soundness theorem

15 /26

Extracted terms, soundness theorem

For a derivation M of a formula A define its extracted term et(M),
of type 7(A).

15 /26

Extracted terms, soundness theorem

For a derivation M of a formula A define its extracted term et(M),
of type 7(A). For MA with A n.c. let et(MA) :=¢.

15 /26

Extracted terms, soundness theorem

For a derivation M of a formula A define its extracted term et(M),
of type 7(A). For MA with A n.c. let et(MA) := ¢. Else

et(u™) = XZ(A) (XZ(A) uniquely associated to u*),
et((AaME)A7E) = X wet(M),

et((MABNYE) = et(M)et(N),

et((A MA)A) = Apet(M),

et(MPAF AN = et(M)r.

15 /26

Extracted terms, soundness theorem

For a derivation M of a formula A define its extracted term et(M),
of type 7(A). For MA with A n.c. let et(MA) := ¢. Else

et(u™) A (XZ(A) uniquely associated to u*),
(A MBYA) = A met(M),
et((MABNYE) = et(M)et(N),
et((Aee MA)Y=A) = Apet(M),
et(MPAF AN = et(M)r.
Extracted terms for the axioms: let / be c.r.
et(;") := Cj, et(/7) =R,

where both the constructor C; and the recursion operator R refer
to the algebra ¢; associated with /.

15 /26

Extracted terms, soundness theorem

For a derivation M of a formula A define its extracted term et(M),
of type 7(A). For MA with A n.c. let et(MA) := ¢. Else

et(u™) A (XZ(A) uniquely associated to u*),
(A MBYA) = A met(M),
et((MABNYE) = et(M)et(N),
et((Aee MA)Y=A) = Apet(M),
et(MPAF AN = et(M)r.
Extracted terms for the axioms: let / be c.r.
et(;") := Cj, et(/7) =R,

where both the constructor C; and the recursion operator R refer
to the algebra ¢; associated with /.

Soundness. Let M be a derivation of A from assumptions u;: C;.
Then we can derive et(M) r A from assumptions x,, r ;.
15 /26

Relation of TCF' to type theory

16 / 26

Relation of TCF' to type theory

» Main difference: partial functionals are first class citizens.

16 /26

Relation of TCF' to type theory

» Main difference: partial functionals are first class citizens.

> “Logic enriched”: Formulas and types kept separate.

16 / 26

Relation of TCF' to type theory

» Main difference: partial functionals are first class citizens.
> “Logic enriched”: Formulas and types kept separate.

» Minimal logic: —,V only. x = y (Leibniz equality), 3, V, A
inductively defined (Martin-Lof).

16 / 26

Relation of TCF' to type theory

v

Main difference: partial functionals are first class citizens.

> “Logic enriched”: Formulas and types kept separate.

v

Minimal logic: —,V only. x = y (Leibniz equality), 3, V, A
inductively defined (Martin-Lof).

1 := (False = True). Ex-falso-quodlibet: 1 — A provable.

v

16 /26

Relation of TCF' to type theory

v

Main difference: partial functionals are first class citizens.

> “Logic enriched”: Formulas and types kept separate.

v

Minimal logic: —,V only. x = y (Leibniz equality), 3, V, A
inductively defined (Martin-Lof).

1 := (False = True). Ex-falso-quodlibet: 1 — A provable.

v

v

“Decorations” —"¢, V"¢ (i) allow abstract theory (ii) remove
unused data.

16 /26

Case study: uniformly continuous functions (U. Berger)

17 /26

Case study: uniformly continuous functions (U. Berger)

» Formalization of an abstract theory of (uniformly) continuous
real functions f: | — | (I :=[-1,1]).

17 /26

Case study: uniformly continuous functions (U. Berger)

» Formalization of an abstract theory of (uniformly) continuous
real functions f: | — | (I :=[-1,1]).

> Let Cf express that f is a continuous real function. Assume
the abstract theory proves

Cf = Vo3 Va3p(Fllam) € lpn) with Iy, = [b— &, b+ %]

g
B, nf

17 /26

Case study: uniformly continuous functions (U. Berger)

» Formalization of an abstract theory of (uniformly) continuous
real functions f: | — | (I :=[-1,1]).

> Let Cf express that f is a continuous real function. Assume
the abstract theory proves

Cf = Vo3 Va3p(Fllam) € lpn) with Iy, = [b— &, b+ %]

B o
Then
n—m modulus of (uniform) continuity (w)
n,a— b approximating rational function (h)

17 /26

Readx and its witnesses

18 /26

Readx and its witnesses

Inductively define a predicate Readx of arity (¢) by the clauses

ViVa(f[l] C Iy — X(Outy o f) — Readxf), (Readx)d
Vi°(Readx(f oIn_1) — Readx(f o Ing) — Readx(f oIn;) —
Readxf).
(Readx)y

where Iy = [dT, i] (d € {-1,0,1}) and

X+ d

(Outy o f)(x) := 2f(x) — d, (f oIng)(x) := f(5)-

18 /26

Readx and its witnesses

Inductively define a predicate Readx of arity (¢) by the clauses

ViVa(f[l] C Iy — X(Outy o f) — Readxf), (Readx)d
Vi°(Readx(f oIn_1) — Readx(f o Ing) — Readx(f oIn;) —
Readxf).
(Readx)y

where Iy = [%, %] (d € {-1,0,1}) and

X+ d

(Outy o f)(x) := 2f(x) — d, (f oIng)(x) := f(5)-

Witnesses for Readxf: total ideals in
R, = ug(PutSD_mHg, Getf_*g_’é_%)

where SD := {—1,0,1}.

18 /26

Write, “Write and its witnesses

19 /26

Write, “Write and its witnesses

Nested inductive definition of a predicate Write of arity (¢):

Write(Id), V3¢(Readwritef — Write f) (Id identity function).

19 /26

Write, “Write and its witnesses

Nested inductive definition of a predicate Write of arity (¢):
Write(Id), V3¢(Readwritef — Write f) (Id identity function).
Witnesses for Write f: total ideals in

W := f1¢(Stop®, ContRe %),

19 /26

Write, ““Write and its witnesses

Nested inductive definition of a predicate Write of arity (¢):
Write(Id), V3¢(Readwritef — Write f) (Id identity function).
Witnesses for Write f: total ideals in

W := f1¢(Stop®, ContRe %),
Define ““Write, a companion predicate of Write, by

VEC(©°Write f — f = Id V Readecowitef)- (“°“Write) ™

19 /26

Write, ““Write and its witnesses

Nested inductive definition of a predicate Write of arity (¢):
Write(Id), V3¢(Readwritef — Write f) (Id identity function).
Witnesses for Write f: total ideals in
W := f1¢(Stop®, ContRe %),
Define ““Write, a companion predicate of Write, by
Ve (““Write f — f = Id V Readcowpitef). (“°“Write) ™

Witnesses for ©®Write f: W-cototal Ry-total ideals t.

19 /26

W-cototal Ry-total ideals

20 /26

W-cototal Ry-total ideals

are possibly non well-founded trees t:

Get
Cont
Stop
Stop Puty
Get

» Get-Put-part: well-founded,

» Stop-Cont-part: not necessarily well-founded.

20/26

W-cototal Ry-total ideals as stream transformers

21/26

W-cototal Ry-total ideals as stream transformers

View them as read-write machines.

21/26

W-cototal Ry-total ideals as stream transformers

View them as read-write machines.
» Start at the root of the tree.

21/26

W-cototal Ry-total ideals as stream transformers
View them as read-write machines.

» Start at the root of the tree.
» At node Putgyt, output the digit d, carry on with the tree t.

21/26

W-cototal Ry-total ideals as stream transformers

View them as read-write machines.
» Start at the root of the tree.
» At node Putgyt, output the digit d, carry on with the tree t.

> At node Get t_; tg t1, read a digit d from the input stream
and continue with the tree t4.

21/26

W-cototal Ry-total ideals as stream transformers

View them as read-write machines.

>

>

>

Start at the root of the tree.
At node Putyt, output the digit d, carry on with the tree t.

At node Get t_; ty t1, read a digit d from the input stream
and continue with the tree t4.

At node Stop, return the rest of the input unprocessed as
output.

21/26

W-cototal Ry-total ideals as stream transformers

View them as read-write machines.

>

>

>

Start at the root of the tree.
At node Putyt, output the digit d, carry on with the tree t.

At node Get t_; tp t1, read a digit d from the input stream
and continue with the tree t4.

At node Stop, return the rest of the input unprocessed as
output.

At node Cont t, continue with the tree t.

21/26

W-cototal Ry-total ideals as stream transformers

View them as read-write machines.
» Start at the root of the tree.
» At node Putgyt, output the digit d, carry on with the tree t.

> At node Get t_; tg t1, read a digit d from the input stream
and continue with the tree t4.

» At node Stop, return the rest of the input unprocessed as
output.

» At node Cont t, continue with the tree t.

Output might be infinite, but Ryy-totality ensures that the
machine can only read finitely many input digits before producing
another output digit.

21/26

W-cototal Ry-total ideals as stream transformers

View them as read-write machines.
» Start at the root of the tree.
» At node Putgyt, output the digit d, carry on with the tree t.

> At node Get t_; tg t1, read a digit d from the input stream
and continue with the tree t4.

» At node Stop, return the rest of the input unprocessed as
output.

» At node Cont t, continue with the tree t.

Output might be infinite, but Ryy-totality ensures that the
machine can only read finitely many input digits before producing
another output digit.

The machine represents a continuous function.

21/26

Cf implies “Write f: informal proof

22 /26

Cf implies “Write f: informal proof

The greatest-fixed-point axiom (“°“Write)t (coinduction) is

ViI(QF = Vi(QFf — f =1d V Readeowritevof) — ““Write f).

22 /26

Cf implies “Write f: informal proof

The greatest-fixed-point axiom (“°“Write)t (coinduction) is
ViI(QF = Vi(QFf — f =1d V Readeowritevof) — ““Write f).

Theorem [Type-1 u.c.f. into type-0 u.c.f]. V}(Cf — “°Write f).

22 /26

Cf implies “Write f: informal proof

The greatest-fixed-point axiom (“°“Write)t (coinduction) is
ViI(QF = Vi(QFf — f =1d V Readeowritevof) — ““Write f).

Theorem [Type-1 u.c.f. into type-0 u.c.f]. V}(Cf — “°Write f).

Proof. Assume Cf. Use (“°Write)* with competitor C. Suffices
V2¢(Cf — f =1d V Readeowritevcf). Assume Cf, in particular
Bmoaf :=Va3p(flla,m] C Ip2) for some m. Get rhs by Lemma 1.

Lemma 1. VpV3¢(Bmaf — Cf — Readeowritevcf).

22 /26

Cf implies “Write f: informal proof

The greatest-fixed-point axiom (“°“Write)t (coinduction) is
ViI(QF = Vi(QFf — f =1d V Readeowritevof) — ““Write f).

Theorem [Type-1 u.c.f. into type-0 u.c.f]. V}(Cf — “°Write f).

Proof. Assume Cf. Use (“°Write)* with competitor C. Suffices
V2¢(Cf — f =1d V Readeowritevcf). Assume Cf, in particular
Bmoaf :=Va3p(flla,m] C Ip2) for some m. Get rhs by Lemma 1.

Lemma 1. VpV3¢(Bmaf — Cf — Readeowritevcf).
Proof. Induction on m, using Lemma 2 in the base case.

Lemma 2 [FindSD]. V2¢(Bo.of — J4(f[I] C Iy)).

22 /26

Cf implies “Write f: informal proof

The greatest-fixed-point axiom (“°“Write)t (coinduction) is
V?C(Q f— V?C(Q f—->f=IdvV R@adcowrite\/Qf) — ““Write f)

Theorem [Type-1 u.c.f. into type-0 u.c.f]. V}(Cf — “°Write f).

Proof. Assume Cf. Use (“°Write)* with competitor C. Suffices
V2¢(Cf — f =1d V Readeowritevcf). Assume Cf, in particular
Bmoaf :=Va3p(flla,m] C Ip2) for some m. Get rhs by Lemma 1.

Lemma 1. Vp,V3¢(Bmof — Cf — Readeowritevcf).
Proof. Induction on m, using Lemma 2 in the base case.
Lemma 2 [FindSD]. V}¢(Boof — 34(f[/] C 1g)).

Proof. Assume Bgf. Then f[lpg] C I for some b, by definition
of Bpm. Have b < —%, —% < ph< % or % < b. Can determine
either of /b,2 C 4, Ib,2 Clyor Ib,2 C I1, hence Ed(f[l] - Id)

22 /26

[oh] (CoRec (nat=>nat@@(rat=>rat))=>algwrite)oh
([ohO]Inr((Rec nat=>..[type]..)
left (ohO(Succ(Succ Zero)))
([g,oh1] [let sd (cFindSd(g 0))
(Put sd
(InR([n]left(ohl(Succ n))a@
([al2#right (ohl(Succ n))a-SDToInt sd))))]1)
([n,st,g,oh1]
Get
(st([alg((a+IntN 1)/2))
([n0]left(ohl no)@
([alright (ohl n0) ((a+IntN 1)/2))))
(st ([alg(a/2)) ([n0]left (ohl no)e
([alright (ohl n0) (a/2))))
(st(lalg((a+1)/2)) ([n0]1left(ohl nl)@
([alright (ohl n0) ((a+1)/2)))))
right (ohO(Succ(Succ Zero)))
oh0))

23 /26

Corecursion
The corecursion operator ““Ry,, has type

T = (1 = U+ Rwyr) = W.

Conversion rule
ORI NM — [case (MN)VTRWT) of
Inl _ +— Stop |
Inr x Cont(M\é\EWM)(}\p[case pWtT of
Inl yW y |
Inr z" — “RyzM])
xRW=7)]

with M a “map"-operator.
» Here 7is N - N x (Q — Q), for pairs of w: N — N and
h: N — Q — Q (variable name oh).
» No termination; translate into Haskell for evaluation.
24 /26

Corecursion
The corecursion operator ““Ry,, has type

7= (T —= U+ Rwy,) = W.

24 /26

Corecursion
The corecursion operator ““Ry,, has type

T = (1 = U+ Rwyr) = W.

Conversion rule

ORI NM — [case (MN)VTRWT) of

Inl _ +— Stop |
Inr x — Cont(/\/l‘,’z‘(wﬂ)()\p[case pWtT of
Inl yW — y |
Inr z" — “RyzM])
KROW7)]

with M a “map"”-operator.

24 /26

Corecursion
The corecursion operator ““Ry,, has type

T = (1 = U+ Rwyr) = W.

Conversion rule

ORI NM — [case (MN)VTRWT) of

Inl _ +— Stop |
Inr x — Cont(M‘é‘Ew+T)(Ap[case pWtT of
Inl yW — y |
Inr z" — “RyzM])
KROW7)]

with M a “map"”-operator.

» Here 7is N - N x (Q — Q), for pairs of w: N — N and
h: N — Q — Q (variable name oh).

24 /26

Corecursion
The corecursion operator ““Ry,, has type

T = (1 = U+ Rwyr) = W.

Conversion rule

ORI NM — [case (MN)VTRWT) of

Inl _ +— Stop |
Inr x — Cont(M‘é‘Ew+T)(Ap[case pWtT of
Inl yW — y |
Inr z" — “RyzM])
KROW7)]

with M a “map"”-operator.
» Here 7is N - N x (Q — Q), for pairs of w: N — N and
h: N — Q — Q (variable name oh).
» No termination; translate into Haskell for evaluation.
24 /26

Conclusion

TCF (theory of computable functionals) as a possible foundation
for exact real arithmetic.

» Simply typed theory, with “lazy” free algebras as base types
(= constructors are injective and have disjoint ranges).

v

Variables range over partial continuous functionals.

v

Constants denote computable functionals (:= r.e. ideals).

v

Minimal logic (—,), plus inductive & coinductive definitions.

v

Computational content in abstract theories.

v

Decorations (—,V and —"¢, V") for fine-tuning.

25 /26

References

v

U. Berger, From coinductive proofs to exact real arithmetic.
CSL 20009.

K. Miyamoto and H.S., Program extraction in exact real
arithmetic. To appear, MSCS.

v

v

K. Miyamoto, F. Nordvall Forsberg and H.S., Program
extraction from nested definitions. ITP 2013.

v

H.S. and S.S. Wainer, Proofs and Computations. Perspectives
in Logic, ASL & Cambridge UP, 2012.

26 /26

